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Nonlinear Programming Algorithms

5.1 Introduction

This chapter describes algorithms that have been specifically designed for
finding optima of Nonlinear Programming (NLP) problems.

5.1.1 General NLP problem

The generic NLP problem has been introduced in Chapter 1:

min f(x)
s.t. gi(x) ≤ 0 for some properties i, inequality constraints,

gi(x) = 0 for some properties i, equality constraints.
(5.1)

where x is moving in a continuous way in the feasible set X that is defined
by the inequality and equality constraints. An important distinction from the
perspective of the algorithms is whether derivative information is available on
the functions f and gi. We talk about first order derivative information if the
vector of partial derivatives, called the gradient, is available in each feasible
point.

The most important distinction is that between smooth and nonsmooth

optimization. If the functions f and g are continuously differentiable, one
speaks of smooth optimization. In many practical models, the functions are
not everywhere differentiable as illustrated in Chapter 2 e.g. Figure 2.3.

5.1.2 Algorithms

In general one would try to find “a” or “the” optimum with the aid of software
called a solver, which is an implementation of an algorithm. For solvers related
to modeling software, see e.g. the gams-software (www.gams.com), ampl

(www.ampl.com), Lingo (www.lindo.com) and aimms (www.aimms.com).
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Following the generic description of Törn and Žilinskas (1989), a NLP al-
gorithm can be described as:

xk+1 = Alg(xk, xk−1, . . . , x0) (5.2)

where index k is the iteration counter. Formula (5.2) represents the idea that
a next point xk+1 is generated based on the information in all former points
xk, xk−1, . . . , x0, where x0 is called the starting point. The aim of a NLP algo-
rithm is to detect a (local) optimum point x∗ given the starting point x0. Usu-
ally one is satisfied if convergence takes place in the sense of xk → x∗ and/or
f(xk) → f∗. Beside the classification of using derivative information or not,
another distinction is whether an algorithm aims for constrained optimization
or unconstrained optimization. We talk about constrained optimization, if at
least one of the constraints is expected to be binding in the optimum, i.e.
gi(x

∗) = 0 for at least one constraint i. Otherwise, the constraints are either
absent or can be ignored. We call this unconstrained optimization.

In literature on NLP algorithms, see e.g. Scales (1985) and Gill et al.
(1981), the basic cycle of Algorithm 9 is used in nearly each unconstrained
NLP algorithm.

Algorithm 9 GeneralNLP(f, x0)

Set k := 0
while passing stopping criterion

k := k + 1
determine search direction rk

determine step size λk along line xk + λrk

next iterate is xk+1 := xk + λkrk

endwhile

The determination of the step size λk is done in many algorithms by run-
ning an algorithm for minimizing the one dimensional function ϕrk

(λ) =
f(xk + λrk). This is called line minimization or line search, i.e. f is mini-
mized over the line xk + λrk. In the discussion of algorithms, we first focus
on minimizing functions in one variable, in Section 5.2. They can be used
for line minimization. In Section 5.3, algorithms are discussed that require
no derivative information. We will also introduce a popular algorithm that
does not follow the scheme of Algorithm 9. Algorithms that require derivative
information can be found in Section 5.4. A large class of problems is due to
nonlinear regression problems. Specific algorithms for this class are outlined
in Section 5.5. Finally, Section 5.6 outlines several concepts that are used to
solve NLP problems with constraints.
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5.2 Minimizing functions of one variable

Two concepts are important in finding a minimum of f : R → R; that of
interval reduction and that of interpolation. Interval reduction enhances de-
termining an initial interval and shrinking it iteratively such that it includes
a minimum point. Interpolation makes use of information of function value
and/or higher order derivatives. The principle is to fit an approximating
function and to use its minimum point as a next iterate. Practical algorithms
usually combine these two concepts. Several basic algorithms are described.

5.2.1 Bracketing

In order to determine an interval that contains an internal optimum given
starting point x0, bracketing is used. It iteratively walks further until we are
certain to have an interval (bracket) [a, b] that includes an interior minimum
point. The algorithm enlarges the initial interval with endpoints x0 and x0±ǫ

Algorithm 10 Bracket(f, x0, ǫ, a, b)

Set k := 1, ̺ = 2√
5−1

if (f(x0 + ǫ) < f(x0))
x1 := x0 + ǫ

else if (f(x0 − ǫ) < f(x0))
x1 := x0 − ǫ

else STOP; x0 is optimal
repeat

k := k + 1
xk := xk−1 + ̺(xk−1 − xk−2)

until (f(xk) > f(xk−1))
a := min{xk, xk−2}
b := max{xk, xk−2}

with a step that becomes each iteration a factor ̺ > 1 bigger. Later, in Section
5.2.3 will be explained why exactly the choice ̺ = 2√

5−1 is convenient. It stops

when finally xk−1 has a lower function value than xk as well as xk−2.

Example 5.1. The bracketing algorithm is run on the function f(x) = x+ 16
x+1

with starting point x0 = 0 and accuracy ǫ = 0.1. The initial interval [0, 0.1]
is iteratively enlarged represented by [xk−2, xk] and walking in the positive
direction. After 7 iterations, the interval [1.633, 4.536] certainly contains a
minimum point as there exists an interior point xk−1 = 2.742 with a func-
tion value lower than the end points of the interval; f(2.742) < f(1.633) and
f(2.742) < f(4.536).



94 5 Nonlinear Programming Algorithms

Table 5.1. Bracketing for f(x) = x + 16
x+1

, x0 = 0, ǫ = 0.1

k xk−2 xk f(xk)

0 0.000 16.00
1 0.100 14.65
2 0.000 0.261 12.94
3 0.100 0.524 11.03
4 0.262 0.947 9.16
5 0.524 1.633 7.71
6 0.947 2.742 7.02
7 1.633 4.536 7.43

The idea of interval reduction techniques is now to reduce an initial interval
that is known to contain a minimum point and to shrink it to a tiny interval
enclosing the minimum point. One such a method is bisection.

5.2.2 Bisection

The algorithm departs from a starting interval [a, b] that is halved iteratively
based on the sign of the derivative in the midpoint. This means that the
method is in principle only applicable when the derivative is available at the
generated midpoints. The point xk converges to a minimum point within the
interval [a, b]. If the interval contains only one minimum point, it converges
to that. At each step, the size of the interval is halved and in the end, we are

Algorithm 11 Bisect([a, b], f, ǫ)

Set k := 0, a0 := a and b0 := b
while (bk − ak > ǫ)

xk := ak+bk

2

if f ′(xk) < 0
ak+1 := xk and bk+1 := bk

else

ak+1 := ak and bk+1 := xk

k := k + 1
endwhile

certain that the current iterate xk is not further away than ǫ from a minimum
point. It is relatively easy to determine for this algorithm how many iterations
corresponding to (derivative) function evaluations are necessary to come closer
than ǫ to a minimum point. Since | bk+1 − ak+1 | = 1

2 | bk − ak |, the number
of iterations necessary for reaching ǫ-convergence is:

| bk − ak | = ( 1
2 )k| b0 − a0 | < ǫ ⇒

( 1
2 )k < ǫ

|b0−a0| ⇒ k > ln ǫ−ln|b0−a0|
ln 1

2

.
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Table 5.2. Bisection for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ǫ = 0.01

k ak bk xk f(xk) f ′(xk)

0 2.000 4.500 3.250 7.0147 0.114
1 2.000 3.250 2.625 7.0388 -0.218
2 2.625 3.250 2.938 7.0010 -0.032
3 2.938 3.250 3.094 7.0021 0.045
4 2.938 3.094 3.016 7.0001 0.008
5 2.938 3.016 2.977 7.0001 -0.012
6 2.977 3.016 2.996 7.0000 -0.002
7 2.996 3.016 3.006 7.0000 0.003
8 2.996 3.006 3.001 7.0000 0.000

For instance, bk − ak = 4 requires at least 9 iterations to reach an accuracy
of ǫ = 0.01.

Example 5.2. The bisection algorithm is run on the function f(x) = x + 16
x+1

with starting interval [2, 4.5] and accuracy ǫ = 0.01. The interval [ak, bk] is
slowly closing around the minimum point x∗ = 3 which is approached by
xk. One can observe that f(xk) is converging fast to f(x∗) = 7. A stopping
criterion on convergence of the function value, | f(xk) − f(xk−1) |, would
probably have stopped the algorithm earlier. The example also shows that
the focus of the algorithm is on approximating a point x∗ where the derivative
is zero, f ′(x∗) = 0.

The algorithm typically uses derivative information. Usually the efficiency
of an algorithm is measured by the number of function evaluations necessary
to reach the goal of the algorithm. If the derivative is not analytically or
computationally available, one has to evaluate in each iteration two points,
xk and xk +δ, where δ is a small accuracy number such as 0.0001. Evaluating
in each iteration 2 points, leads to a reduction of the interval to its half at
each iteration.

Interval reduction methods usually use the function value of two interior
points in the interval to decide the direction in which to reduce it. One
elegant way is to recycle one of the evaluated points and to use it in the next
iterations. This can be done by using the so-called Golden Section rule.

5.2.3 Golden Section search

This method uses two evaluated points l (left) and r (right) in the interval
[ak, bk], that are located in such a way that one of the points can be used again
in the next iteration. The idea is sketched in Figure 5.1. The evaluation points
l and r are located with fraction τ in such a way that l = a+(1−τ)(b−a) and
r = a + τ(b − a). Equating in the Figure 5.1 the next right point to the old
left point gives the equation τ2 = 1 − τ . The solution is the so-called Golden

Section number τ =
√

5−1
2 ≈ 0.618.
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Fig. 5.1. Golden Section search

This value also corresponds to the value ̺ used in the Bracketing algorithm
in the following way. Using the outcomes of the Bracketing algorithm as input
into the Golden Section search as [a, b] gives that the point xk−1 (of algorithm
Bracket) corresponds to x0 (in algorithm Goldsect). This means that it does
not have to be evaluated again.

Example 5.3. The Golden Section search is run on the function f(x) = x+ 16
x+1

with starting interval [2, 4.5] and accuracy ǫ = 0.1 The interval [ak, bk] encloses
the minimum point x∗ = 3. Notice that the interval is shrinking slower than
by bisection, as | bk+1 − ak+1 | = τ | bk − ak | = τk−1| b1 − a1 |. After 8 iter-
ations the reached accuracy is less than by bisection, although for this case
xk approaches the minimum very well. On the other hand, only one function
evaluation is required at each iteration.

Algorithm 12 Goldsect([a, b], f, ǫ)

Set k := 1, a1 := a and b1 := b, τ :=
√

5−1
2

l := x0 := a + (1 − τ)(b − a), r = x1 := a + τ(b − a)
Evaluate f(l) := f(x0)
repeat

Evaluate f(xk)
if (f(r) < f(l))

ak+1 := l, bk+1 := bk, l := r
r := xk+1 := ak+1 + τ(bk+1 − ak+1)

else

ak+1 := ak, bk+1 := r, r := l
l := xk+1 := ak+1 + (1 − τ)(bk+1 − ak+1)

k := k + 1
until (bk − ak < ǫ)
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Table 5.3. Golden Section search for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ǫ = 0.1

k ak bk xk f(xk)

0 2.955 7.0005
1 2.000 4.500 3.545 7.0654
2 2.000 3.545 2.590 7.0468
3 2.590 3.545 3.180 7.0078
4 2.590 3.180 2.816 7.0089
5 2.816 3.180 3.041 7.0004
6 2.955 3.180 3.094 7.0022
7 2.955 3.094 3.008 7.0000
8 2.955 3.041 2.988 7.0000

5.2.4 Quadratic interpolation

The interval reduction techniques discussed so far only use information on
whether one function value is bigger or smaller than the other or the sign of
the derivative. The function value itself in an evaluation point or the value
of the derivative has not been used on the decision on how to reduce the
interval. Interpolation techniques decide on the location of the iterate xk

based on values in the former iterates.

ca xk b

f

Fig. 5.2. Quadratic interpolation

The central idea of quadratic interpolation is to fit a parabola through the
end points a, b of the interval and an interior point c and to base the next
iterate on its minimum. This works well if

f(c) ≤ min{f(a), f(b)} (5.3)

and the points are not located on one line such that f(a) = f(b) = f(c). It
can be shown that the minimum of the corresponding parabola is
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Algorithm 13 Quadint([a, b], f, ǫ)

Set k := 1, a1 := a and b1 := b

c := x0 := (b+a)
2

Evaluate f(a1), f(c) := f(x0), f(b1)

x1 := 1
2

f(a)(c2−b2)+f(c)(b2−a2)+f(b)(a2−c2)
f(a)(c−b)+f(c)(b−a)+f(b)(a−c)

while (| c − xk |> ǫ)
Evaluate f(xk)
l := min{xk, xk−1}, r := max{xk, xk−1}
if (f(r) < f(l))

ak+1 := l, bk+1 := bk, c := r
else

ak+1 := ak, bk+1 := r, c := l
k := k + 1

xk := 1
2

f(ak)(c2−b2k)+f(c)(b2k−a2
k)+f(bk)(a2

k−c2)

f(ak)(c−bk)+f(c)(bk−ak)+f(bk)(ak−c)

endwhile

x =
1

2

f(a)(c2 − b2) + f(c)(b2 − a2) + f(b)(a2 − c2)

f(a)(c − b) + f(c)(b − a) + f(b)(a − c)
. (5.4)

For use in practice, the algorithm needs many safeguards that switch to
Golden Section points if condition (5.3) is not fulfilled. Brent’s method is
doing this in an efficient way, see Brent (1973). We give here only a basic
algorithm that works if the conditions are fulfilled.

Example 5.4. Quadratic interpolation is applied to approximate the minimum
of f(x) = x + 16

x+1 with starting interval [2, 4.5] and accuracy ǫ = 0.001.
Although the iterate xk reaches a very good approximation of the minimum
point x∗ = 3 very soon, the proof of convergence is much slower. As can be
observed in Table 5.4, the shrinkage of the interval does not have a guaranteed
value and is relatively slow. For this reason, the stopping criterion of the
algorithm has been put on convergence of the iterate rather than on size of
the interval. This example illustrates why it is worthwhile to apply more

Table 5.4. Quadratic interpolation for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ǫ = 0.001

k ak bk c xk f(xk)

0 3.250 7.0147
1 2.000 4.500 3.250 3.184 7.0081
2 2.000 3.250 3.184 3.050 7.0006
3 2.000 3.184 3.050 3.028 7.0002
4 2.000 3.050 3.028 3.010 7.0000
5 2.000 3.028 3.010 3.005 7.0000
6 2.000 3.010 3.005 3.002 7.0000
7 2.000 3.005 3.002 3.001 7.0000
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complex schedules like that of Brent that guarantee a robust reduction to
prevent the algorithm to start ”slicing off” parts of the interval.

5.2.5 Cubic interpolation

Cubic interpolation has the same danger of lack of convergence of an enclosing
interval, but the theoretical convergence of the iterate is very fast. It has a
so-called quadratic convergence. The central idea is to use derivative informa-
tion in the end points of the interval. Together with the function values, x∗ is

xkak bk

f

Fig. 5.3. Cubic interpolation

approximated by the minimum of a cubic polynomial. Like in quadratic inter-
polation, a condition like (5.3) should be checked in order to guarantee that
the appropriate minimum locates in the interval [a, b]. For cubic interpolation
this is

f ′(a) < 0 and f ′(b) > 0. (5.5)

Given the information f(a), f ′(a), f(b) and f ′(b) in the end points of the
interval, the next iterate is given in equation (5.6) in the way that is common
in literature.

xk = b − (b − a)
f ′(b) + v − u

f ′(b) − f ′(a) + 2v
(5.6)

where u = f ′(a) + f ′(b)− 3 f(a)−f(b)
a−b

and v =
√

u2 − f ′(a)f ′(b). The function
value and derivative are evaluated in xk and depending on the sign of the
derivative, the interval is reduced to the right or left. Similar to quadratic
interpolation, slow reduction of the interval may occur, but on the other hand
the iterate converges fast. Notice that the method requires more information,
as also the derivatives should be available. The algorithm is sketched without
taking safeguards into account with respect to the conditions, or the iterate
hitting a stationary point.
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Algorithm 14 Cubint([a, b], f, f ′, ǫ)

Set k := 1, a1 := a and b1 := b
Evaluate f(a1), f ′(a1), f(b1), f ′(b1)

u := f ′(a) + f ′(b) − 3 f(a)−f(b)
a−b

, v :=
p

u2 − f ′(a)f ′(b)

x1 := b − (b − a) f ′(b)+v−u

f ′(b)−f ′(a)+2v

repeat

Evaluate f(xk), f ′(xk)
if f ′(xk) < 0

ak+1 := xk, bk+1 := bk

else

ak+1 := ak, bk+1 := xk

k := k + 1

u := f ′(ak) + f ′(bk) − 3 f(ak)−f(bk)
ak−bk

, v :=
p

u2 − f ′(ak)f ′(bk)

xk := bk − (bk − ak) f ′(bk)+v−u

f ′(bk)−f ′(ak)+2v

until (| xk − xk−1 |< ǫ)

Example 5.5. Cubic interpolation is applied to find the minimum of f(x) =
x + 16

x+1 with starting interval [2, 4.5] and accuracy ǫ = 0.01. One iteration
after reaching the stopping criterion has been given in Table 5.5. For this
case, also the interval converges very fast around the minimum point.

Table 5.5. Cubic interpolation for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ǫ = 0.01

k ak bk xk f(xk) f ′(xk)

1 2.000 4.500 3.024 7.0001 0.012
2 2.000 3.024 2.997 7.0000 -0.001
3 2.997 3.024 3.000 7.0000 0.000
4 2.997 3.000 3.000 7.0000 0.000

5.2.6 Method of Newton

In the former examples, the algorithms converge to the minimum point, where
the derivative has a value of zero, i.e. it is a stationary point. Methods that
look for a point with function value zero can be based on bisection, Brent
method, but also on the Newton-Raphson iterative formula: xk+1 = xk −
f(xk)
f ′(xk) . If we replace the function f in this formula by its derivative f ′, we

have a basic method for looking for a stationary point. We have already seen
in the elaboration in Chapter 4 that the method may converge to a minimum,
maximum or infliction point.

In order to converge to a minimum point, in principle the second order
derivative of an iterate should be positive, i.e. f ′′(xk) > 0. If we have a starting
interval, also safeguards should be included in the algorithm to prevent the
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Algorithm 15 Newt(x0, f, ǫ)

Set k := 0,
repeat

xk+1 := xk − f ′(xk)
f ′′(xk)

k := k + 1
until (| xk − xk−1 |< ǫ)

iterates to leave the interval. The basic shape of the method without any
safeguards is given in Algorithm 15.

Example 5.6. The method of Newton is used for the example function f(x) =
x + 16

x+1 with starting point x0 = 2 and accuracy ǫ = 0.01. Theoretically the
method of Newton has the same convergence rate as Cubic interpolation. For
this specific example one can observe a similar speed of convergence.

Table 5.6. Newton for f(x) = x + 16
x+1

, x0 = 2, ǫ = 0.01

k xk f(xk) f ′(xk) f ′′(xk)

0 2.000 7.3333 -0.778 1.185
1 2.656 7.0323 -0.197 0.655
2 2.957 7.0005 -0.022 0.516
3 2.999 7.0000 0.000 0.500
4 3.000 7.0000 0.000 0.500

5.3 Algorithms not using derivative information

In Section 5.2, we have seen that several methods use derivative information
and others do not. Let us consider methods for finding optima of functions of
several variables, f : R

n → R. When derivative information is not available,
or one does not want to use it, there are several options to be considered. One
approach often used is to apply methods that use derivative information and
to approximate the derivative in each iteration numerically. Another option is
to base the search directions in Algorithm 9 on directions that are determined
by only using the values of the function evaluations. A last option is the use
of so-called direct search methods.

From this last class, we will describe the so-called Downhill Simplex
method due to Nelder and Mead (1965). It is popular due to its attrac-
tive geometric description and robustness and also its appearance in standard
software like matlab (www.mathworks.com) and the Numerical Recipes of
Press et al. (1992). It will be described in Section 5.3.1. Press et al. (1992)
also mention ”..Powell’s method is almost surely faster in all likely applica-

tions..”. The method of Powell is based on generating search directions built
on earlier directions like in Algorithm 9. It is described in Section 5.3.2.
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5.3.1 Method of Nelder and Mead

Like in evolutionary algorithms (see Davis (1991) and Section 7.5), the method
works with a set of points that is iteratively updated. The iterative set
P = {p0, . . . , pn} is called a simplex, because it contains n + 1 points in
an n-dimensional space. The term Simplex method used by Nelder and
Mead (1965), should not be confused with the Simplex method for Linear
Optimization. Therefore, it is also called Polytope method to distinguish.
The initial set of points can be based on a starting point x0 by taking
p0 = x0, pi = x0 + δei, i = 1, . . . , n, where δ is a scaling factor and ei the
ith unit vector. The following ingredients are important in the algorithm and
define the trial points.

• The two worst points p(n) = argmaxp∈P f(p), p(n−1) = argmaxp∈P\p(n)
f(p)

in P and lowest point p(0) = argminp∈P f(p) are identified.
• The centroid c of all but the highest point is used as building block

c =
1

n

∑

i 6=(n)

pi (5.7)

Algorithm 16 NelderMead(x0, f, ǫ)

Set k := 0, P := {p0, . . . , pn} with p0 := x0 and pi := x0 + δei i = 1, . . . , n
Evaluate f(pi) i = 1, . . . , n
Determine points p(n), p(n−1) and p(0) in P
with corresponding values f(n), f(n−1) and f(0)

while (f(n) − f(0) > ǫ)
c := 1

n

P

i6=(n) pi

x(r) := c + (c − p(n)), evaluate f(x(r))

if (f(0) < f(x(r)) < f(n−1))

P := P \ {p(n)} ∪ {x(r)} x(r) replaces p(n) in P

if (f(x(r)) < f(0))

x(e) := c + 1.5(c − p(n)), evaluate f(x(e))

P := P \ {p(n)} ∪ {argmin{f(x(e)), f(x(r))}} best trial replaces p(n)

if (f(x(r)) ≥ f(n−1))

x(c) := c + 0.5(c − p(n)), evaluate f(x(c))

if (f(x(c)) < f(x(r)) < f(n))

P := P \ {p(n)} ∪ {x(c)} replace p(n) by x(c)

else

if (f(x(c)) > f(x(r)))

P := P \ {p(n)} ∪ {x(r)}
else

pi := 1
2
(pi + p(0)), i = 0, . . . , n full contraction

Evaluate f(pi), i = 1, . . . , n
P := {p0, . . . , pn}

k := k + 1
endwhile
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• A trial point is based on reflection step: x(r) = c+(c−p(n)), Figure 5.4(a).
• When the former step is successful, a trial point is based on an expansion

step x(e) = c + 1.5(c − p(n)), shown in Figure 5.4(c).
• In some cases a contraction trial point is generated as shown in Figure

5.4(b); x(c) = c + 0.5(c − p(n)).
• If the trials are not promising, the simplex is shrunk via a so-called multiple

contraction towards the point with lowest value pi := 1
2 (pi + p(0)), i =

0, . . . , n.

(a)  reflection (b)  contraction

p(0)

p(0)

p(1)

p(1)

c c

p(n)
p(n)

x(r)

x(c)

p(0)

(c)  expansion

p(1)

c

p(n)

x(e)

Fig. 5.4. Basic steps of the Nelder and Mead algorithm

In the description we fix the size of reflection, expansion and contraction.
Usually this depends on parameters with its value depending on the dimension
of the problem. A complete description is given in Algorithm 16.

Example 5.7. Consider the function f(x) = 2x2
1+x2

2−2x1x2+|x1−3|+|x2−2|.
Let the initial simplex be given by p0 = (1, 2)T , p1 = (1, 0)T and p2 =
(2, 1)T . The first steps are depicted in Figure 5.5. We can see at part (a)
that first a reflection step is taken, the new point becomes p(1). However
at the next iteration, the reflection point satisfies neither condition f(0) <

f(x(r)) < f(n−1) nor f(x(r)) < f(0), thus the contraction point is calculated

(see Figure 5.5(b)). As it has a better function value than f(x(r)), p(n) is

replaced by this point. We can also see that f(x(c)) < f(n−1) as the ordering
changes in Figure 5.5(c). One can observe that when the optimum seems
to be inside the polytope, the size of it decreases leading towards fulfillment
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p(0)

p(1)

p(2)

cx(r)

x(r)

p(0)

p(1)

c

x(c)
(a)  First iteration

p(2)

p(1)

p(0)

p(2)

(b)  Second iteration

(c)  After second iteration

Fig. 5.5. Nelder and Mead method at work

of the termination condition. The fminsearch algorithm in matlab is an
implementation of Nelder-Mead. From a starting point p0 = x0 a first small
simplex is built. Running the algorithm with default parameter values and
x0 = (1, 0)T requires 162 function evaluations before stopping criteria are met.
The evaluated sample points are depicted in Figure 5.6.

1

1 x1

x2

Fig. 5.6. Points generated by NelderMead on f(x) = 2x2
1 + x2

2 − 2x1x2 + |x1 − 3|+
|x2 − 2|. fminsearch with default parameter values.
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5.3.2 Method of Powell

In this method, credited to Powell (1964), a set of directions (d1, . . . , dn) is
iteratively updated to approximate the direction pointing to x∗. An initial

point x0 is given, that will be named x
(1)
1 . At each iteration k, n steps are

taken using the n directions. In each step, x
(k)
i+1 = x

(k)
i + λdi, where the

step size λ is supposed to be optimal, i.e. λ = argminµ f(x
(k)
i + µdi). The

direction set is initialized with the coordinate directions, i.e. (d1, . . . , dn) =
(e1, . . . , en). In fact the first iteration works as the so-called Cyclic Coordinate
Method. However, in the method of Powell (see Algorithm 17) instead of
starting over with the same directions, they are updated as follows. Direction

Algorithm 17 Powell(x0, f, ǫ)

Set k := 0, (d0, . . . , dn) := (e0, . . . , en), and x
(1)
1 := x0

repeat

k := k + 1
for (i = 1, . . . , n) do

Determine step size λ := argminµ f(x
(k)
i + µdi)

x
(k)
i+1 := x

(k)
i + λdi

d := x
(k)
n+1 − x

(k)
1

x
(k+1)
1 := x

(k)
n+1 + λd where λ := argminµ f(x

(k)
n+1 + µd)

di := di+1, i = 1, . . . , n − 1, dn := d

until (|f(x
(k+1)
1 ) − f(x

(k)
1 )| < ǫ)

d = x
(k)
n+1 − x

(k)
1 is the overall direction in the kth iteration. Let the starting

point for the next iteration be in that direction: x
(k+1)
1 = x

(k)
n+1 + λd with

optimal step size λ. The old directions are shifted, di = di+1, i = 1, . . . , n− 1
and the last one is our approximation, dn = d. The iterations continue with

the updated directions until |f(x
(k+1)
1 ) − f(x

(k)
1 )| < ǫ.

Example 5.8. Consider the function f(x) = 2x2
1+x2

2−2x1x2+|x1−3|+|x2−2|
and let x0 = (0, 0)T . The steps of the method of Powell are shown in Figure

5.7. Observe that points x
(1)
1 , x

(1)
3 , x

(2)
1 and x

(2)
1 , x

(2)
3 , x

(3)
1 lie on a common

line, that has the direction d of the corresponding iteration. In this example,
the optimum is found after only three iterations. Notice, that in each step an
exact line search is done in order to obtain the optimal step length λ.

In both the Polytope method and the method of Powell the direction of the
new step depends on the last n points. This is necessary to generate a descent
direction when only function values are known. In the next sections we will
see that derivative information gives easier access to descent directions.
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x2
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(3) =x2
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x1
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(2)

x3
(2)

x1
(1)

Fig. 5.7. Example run of the Powell method

5.4 Algorithms using derivative information

When the function to be minimized is continuously differentiable, i.e. f : R
n →

R ∈ C1, methods using derivative information are likely to be more efficient.
Some methods may even use Hessean information if that is available. These
methods usually can be described by the general scheme of descent direction
methods introduced in Algorithm 9. There are two crucial points in these
algorithms: the choice of the descent direction and the size of the step to
take. The methods are usually named after the way the descent direction is
defined, and they have different versions and modifications depending on how
the step length is chosen.

The first method we discuss is the Steepest descent algorithm in Section
5.4.1, where, as its name tells, the steepest direction is chosen based on the
first-order Taylor expansion. As a second algorithm, the Newton method is
explained in Section 5.4.2. It is based on the second-order Taylor expansion
and uses second derivative information. These two methods are based on
local information only, i.e. the Taylor expansion of the function at the given
point. Conjugate gradient and Quasi-Newton methods also use information
from previous steps to improve the next direction. These advanced methods
are introduced in Section 5.4.3 and 5.4.4, respectively. Finally, we discuss the
consequence of using practical line search methods together with the concept
of trust region methods in Section 5.4.5.
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5.4.1 Steepest descent method

This method is quite historical in the sense that it was introduced in the
middle of the 19th century by Cauchy. The idea of the method is to decrease
the function value as much as possible in order to reach the minimum early.
Thus, the question is in which direction the function decreases most. The first
order Taylor expansion of f near point x in the direction r is

f(x + r) ≈ f(x) + ∇f(x)T r.

So, we search for the direction

min
r∈Rn

∇f(x)T r

‖r‖ ,

which is for the Euclidean norm the negative gradient, i.e. r = −∇f(x) (see
Figure 5.8). That is why this method is also called gradient method.

)(xf∇

x2

x

r

x1

Fig. 5.8. Steepest descent direction

In Figure 5.9 we can see an example run of the method, when the opti-
mal step length is taken for a quadratic function. Notice that the steps are
perpendicular. This is not a coincidence. When the step length is optimal at
the new point, the derivative is zero in the last direction. The new direction
can only be perpendicular. This is called the zigzag effect, and it makes the
convergence slow when the optimum is near.

Example 5.9. Let f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 and x0 = (0, 0)T . The

gradient is ∇f(x) =

(

2(x1 − 3)
6(x2 − 1)

)

, the steepest descent −∇f(x0) =

(

6
6

)

.

We take as first search direction r0 = (1, 1)T . The optimum step size λ can
be found by minimizing ϕr0(µ) = f(x0+µr0) over µ. For a quadratic function
we can consider finding the stationary point, such that
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x2

x1

x3

x1

x2

Fig. 5.9. Example run of Steepest descent method

ϕ′(λ) = rT
0 ∇f(x0 + λr0) = (1, 1)T

(

2(x1 − 3)
6(x2 − 1)

)

= 2(λ − 3) + 6(λ − 1) = 0.

This gives the optimal step size of λ = 3
2 . The next iterate is x1 = (x0+λr0) =

(0, 0)T + 3
2 (1, 1)T = (1.5, 1.5)T . Following the steepest descent process where

we keep the same length of the search vector leads to the iterates in Table
5.7. Notice that ‖∇fk‖ is getting smaller, as xk is converging to the minimum
point. Moreover, notice that rT

k rk−1 = 0.

Table 5.7. Steepest descent iterations, f(x) = (x1 −3)2 +3(x2 −1)2 +2 and x0 = 0

k −∇fT
k−1 rT

k−1 λ xT
k f(xk)

0 (0,0) 12

1 (6,6) (1,1) 3
2

(1.5, 1.5) 5

2 (3,-3) (1,-1) 3
4

(2.25, 0.75) 2.75

3 (1.5, 1.5) (1,1) 3
8

(2.625, 1.125) 2.1875

In practical implementations, computing the optimal step length far away
from x∗ can be unnecessary and time consuming. Therefore, fast inexact line
search methods have been suggested to approximate the optimal step length.
We discuss these approaches in Section 5.4.5.

5.4.2 Newton method

We have already seen the Newton method in the univariate case in Section
5.2.6. For multivariate optimization the generalization is straightforward:
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xk+1 = xk − H−1
f (xk)∇f(xk).

But where does this formula come from? Let us approximate the function f
with its second-order Taylor expansion

T (x + r) = f(x) + ∇f(x)T r +
1

2
rT Hf (x)r.

Finding the minimum of T (x + r) in r can give us a new direction towards
x∗. Having a positive definite Hessean Hf (see Section 3.3), the minimum is
the solution of ∇T (x+ r) = 0. Thus, we want to solve linear equation system

∇T (x + r) = ∇f(x) + Hf (x)r = 0

in r. Its solution r = −H−1
f (x)∇f(x) gives direction as well as step size.

The above construction ensures that for quadratic functions the optimum
(if it exists) is found in one step.

Example 5.10. Consider the same minimization problem as in Example 5.9,
i.e. minimize f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 with starting point x0 = 0.

Gradient ∇f(x) =

(

2(x1 − 3)
6(x2 − 1)

)

while the Hessean Hf (x) =

(

2 0
0 6

)

. Thus,

x1 = x0 − H−1
f ∇f(x0) =

(

0
0

)

−
(

1/2 0
0 1/6

) (

−6
−6

)

=

(

3
1

)

. At x1 the

gradient is zero, the Hessean is positive definite, thus we have reached the
optimum.

5.4.3 Conjugate gradient method

This class of methods can be viewed as a modification of the steepest descent
method, where in order to avoid the zigzagging effect, at each iteration the
direction is modified by a combination of the earlier directions:

rk = −∇fk + βkrk−1. (5.8)

These corrections ensure that r1, r2, . . . , rn are so-called conjugate directions.
This means that there exist a matrix A such that rT

i Arj = 0, ∀i 6= j. For
instance, the coordinate directions (the unit vectors) are conjugate. Just take
A as the unit matrix. The underlying idea is that A is the inverse of the
Hessean. One can derive that using exact line search the optimum is reached
in at most n steps for quadratic functions.

Having the direction rk, the next iterate is calculated in the usual way

xk+1 = xk + λrk

where λ is the optimal step length argminµ f(xk +µrk), or its approximation.
The parameter βk can be calculated using different formulas. Hestenes

and Stiefel (1952) suggested
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βk =
∇fT

k (∇fk −∇fk−1)

rT
k (∇fk −∇fk−1)

. (5.9)

Later, Fletcher and Reeves (1964) examined

βk =
‖∇fk‖2

‖∇fk−1‖2
, (5.10)

and lastly the formula of Polak and Ribière (1969) is

βk =
∇fT

k (∇fk −∇fk−1)

‖∇fk−1‖2
. (5.11)

These formulas are based on the quadratic case where f(x) = 1
2xT Ax +

bT x + c for a positive definite A. For this function, the aim is to have A-
conjugate directions, so rT

j Ari, ∀j 6= i. Plugging (5.8) into rT
k Ark−1 = 0

gives −∇fT
k Ark−1 + βkrT

k−1Ark−1 = 0 such that

βk =
∇fT

k Ark−1

rT
k−1Ark−1

.

Now, having ∇f(x) = Ax+b gives ∇f(xk) = A(xk−1 +λrk−1)+b = ∇fk−1 +
λArk−1 such that ∇fk −∇fk−1 = λArk−1. Thus,

βk =
∇fT

k Ark−1

rT
k−1Ark−1

=
∇fT

k (∇fk −∇fk−1)

rT
k (∇fk −∇fk−1)

.

This is exactly the formula of Hestenes and Stiefel. In fact, for the quadratic
case all three formulas are equal, and the optimum is found in at most n steps.

Example 5.11. Consider the instance of Example 5.9 with f(x) = (x1 − 3)2 +
3(x2 − 1)2 + 2 and x0 = (0, 0)T . In the first iteration, we follow the steepest

descent, such that ∇f(x0) =

(

−6
−6

)

gives our choice r0 = (1, 1)T , λ = 3
2 and

x1 = (1.5, 1.5)T . Now we follow the conjugate direction given by (5.8) and
Fletcher-Reeves (5.10). Given that ∇f(x1) = (−3, 3)T , ‖∇f(x0)‖2 = 72 and
‖∇f(x1)‖2 = 18, the next direction is determined by

r1 = −∇f1 + β1r0 = −∇f1 +
‖∇f1‖2

‖∇f0‖2
r0 =

(

3
−3

)

+
18

72

(

6
6

)

=

(

4.5
−1.5

)

.

This direction points directly to the minimum point x∗ = (3, 1)T , see Figure
5.10. Notice that r0 and r1 are conjugate with respect to the Hessean H of f :

rT
0 Hr1 = (1, 1)

(

2 0
0 6

) (

4.5
−1.5

)

= 0.
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x2

x*

x1

Fig. 5.10. Example run of Conjugate gradient method

5.4.4 Quasi-Newton method

The name tells us that these methods work similarly as the Newton method.
The main idea is to approximate the Hessean matrix instead of computing
it at every iteration. Recall that the Newton method computes the search
direction as

rk = −Hf (xk)−1∇f(xk),

where Hf (xk) should be positive definite. In order to avoid problems with
non-positive definite or non-invertible Hessean matrices and in addition to
save Hessean evaluation, quasi-Newton methods approximate Hf (xk) by Bk

using an updating formula Bk+1 = Bk + Uk.
The updating should be such that at each step the new curvature infor-

mation is built in the approximated Hessean. Using the second order Taylor
expansion of function f ,

T (xk + r) ≈ f(xk) + ∇f(xk)T r +
1

2
rT Hf (xk)r

one can obtain that

∇f(xk + r) ≈ ∇T (xk + r) = ∇f(xk) + Hf (xk)r.

Taking r = rk and denoting yk = ∇f(xk+1) −∇f(xk) gives

yk ≈ Hf (xk)rk. (5.12)

Equation (5.12) gives the so-called quasi-Newton condition, that is yk = Bkrk

must hold for every Bk and each search direction rk = xk+1 − xk we take.
Apart from (5.12), we also require Bk to be positive definite and symmetric,
although that is not necessary.
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For a rank one update, that is Bk+1 = Bk + αkukuT
k (uk ∈ R

n), the above
requirements define the update:

Bk+1 = Bk +
1

(yk − Bkrk)T rk

(yk − Bkrk)(yk − Bkrk)T . (5.13)

This is called the symmetric rank one formula (SR1).
In general, after updating the approximate Hessean matrix, its inverse

should be computed to obtain the direction. Fortunately, using the Sherman-
Morrison formula we can directly update the inverse matrix. For SR1 formula
(5.13), denoting Mk = B−1

k

Mk+1 = Mk +
1

(rk − Mkyk)T yk

(rk − Mkyk)(rk − Mkyk)T .

Two popular rank two update formulas deserve to be mentioned. The
general form for rank two formulas is Bk+1 = Bk +αkukuT

k +βkvkvT
k . One of

them is the Davidon-Fletcher-Powell formula (DFP), that determines Bk+1

or Mk+1 as

Bk+1 = Bk +
(yk − Bkrk)(yk − Bkrk)T

yT
k rk

− BkrkrT
k Bk

yT
k rk

+
rT
k BkrkykyT

k

(yT
k rk)2

,

Mk+1 = Mk +
rkrT

k

yT
k rk

− MkykyT
k Mk

yT
k Mkyk

. (5.14)

Later, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method was discov-
ered by Broyden, Fletcher, Goldfarb, and Shanno independently of each other
around 1970. Nowadays mostly this update formula is used. The updating
formulas are

Bk+1 = Bk +
ykyT

k

yT
k rk

− BkrkrT
k Bk

rT
k Bkrk

,

Mk+1 = Mk +
(rk − Mkyk)(rk − Mkyk)T

yT
k rk

− MkykyT
k Mk

yT
k rk

+
yT

k MkykrkrT
k

(yT
k rk)2

.

Example 5.12. We now elaborate the DFP method based on the instance of
Example 5.9 with f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 and x0 = (0, 0)T . In the

first iteration, we follow the steepest descent. ∇f(x0) =

(

−6
−6

)

and exact line

search gives x1 = (1.5, 1.5)T . In terms of the quasi-Newton concept, direction
r0 = x1 − x0 = (1.5, 1.5)T and y0 = ∇f1 − ∇f0 = (3, 9)T . Now we can
determine all ingredients to compute the updated matrix of (5.14). Keeping
in mind that M0 is the unit matrix, such that M0y0 = y0,

r0r
T
0 =

9

4

(

1 1
1 1

)

, M0y0y
T
0 M0 = 9

(

1 3
3 9

)

, rT
0 y0 = 18 and yT

0 M0y0 = 90.
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The updated multiplication matrix M1 is now determined by (5.14).

M1 =

(

1 0
0 1

)

+
1

8

(

1 1
1 1

)

− 1

10

(

1 3
3 9

)

=
1

40

(

41 −7
−7 9

)

.

Notice that M1 fulfills the (inverse) quasi-Newton condition r0 = M1y0. Now
we can determine the search direction

r1 = −M1∇f1 =
1

40

(

41 −7
−7 9

) (

3
−3

)

=
6

5

(

3
−1

)

.

This is the same direction of search as found by the conjugate direction method
in Example 5.11 and points to the minimum point x∗ = (3, 1)T . Further
determination of M2 is more cumbersome by hand, although easy with a
matrix manipulation program. One can verify that M2 = H−1

f as should be
the case for quadratic functions.

5.4.5 Inexact line search

In almost all descent direction methods, a line search is done in each step.
So far we have only used the optimal step length, which means that exact
line search was supposed. We have already seen that for quadratic functions
the optimal step length is easy to compute. Otherwise a one dimensional
optimization method (see Section 5.2) can be used. When we are still far away
from the minimum, computing a very good approximation of the optimal step
length is not efficient usually. But how to know that we are still far away from
the optimum and that an approximation is good enough? Of course there is no
exact answer to these questions, but some rules can be applied. For instance
we suspect that ‖∇f(x)‖ → 0 as x → x∗. To avoid a too big or too small
step, a sufficient decrease in objective is required. For a small 0 < α < 1

fk + (1 − α)λ∇fT
k rk < f(xk + λrk) (5.15)

f(xk + λrk) < fk + αλ∇fT
k rk (5.16)

must hold. Denoting ϕrk
(λ) = f(xk +λrk) we can write (5.15)-(5.16) together

as
ϕrk

(0) + (1 − α)ϕ′
rk

(0)λ < ϕrk
(λ) < ϕrk

(0) + αϕ′
rk

(0)λ.

(5.15)-(5.16) is called the Goldstein condition. Inequality (5.16) alone is called
the Armijo condition. The idea is depicted in Figure 5.11. Inequality (5.15)
tells that λ has to be greater than a lower bound λ. The Armijo condition
(5.16) gives an upper bound λ on the step size. We can have more disconnected
intervals for λ, and (5.15) may exclude the optimal solution, as it does exclude
a local optimum in Figure 5.11.

To avoid this exclusion, one can use the Wolfe condition. That condition
says that the derivative in the new point has to be smaller than in the old
point; for a parameter 0 < σ < 1
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Fig. 5.11. Goldstein condition

ϕ′
rk

(λ) < σϕ′
rk

(0), (5.17)

or alternatively

∇f(xk + λrk)T rk < σ∇f(xk)T rk.

The Wolfe condition (5.17) together with the Armijo condition (5.16) is called
the Wolfe conditions. In the illustration, (5.16) and (5.17) mean that step size
λ must belong to one of the intervals shown in Figure 5.12.

The good news about these conditions is that the used line search can be
very rough. If the step length fulfills these conditions, then convergence can
be proved.

In practice, usually a backtracking line search is done until the chosen
conditions are fulfilled. The concept of backtracking line search is very easy.
Given a (possibly large) initial step length λ0, decrease it proportionally with
a factor 0 < β < 1 until the chosen condition is fulfilled (see Algorithm 18).

Algorithm 18 BacktrackLineSearch(λ0, ϕrk
, β)

k := 1
while (conditions not fulfilled)

λk := βλk−1

k := k + 1
endwhile
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Fig. 5.12. Wolfe conditions

5.4.6 Trust Region Methods

Trust region methods have a different concept than general descent methods.
The idea is, first to decide the step size, and then to optimize for the best
direction. The step size defines the radius ∆ of the trust region, where the
approximate function (usually the second order Taylor expansion) is trusted to
behave similarly as the original function. Within radius ∆ (or maximum step
size) the best direction is calculated according to the approximate function
mk(x), i.e.

min
‖r‖<∆

mk(xk + r), (5.18)

where usually

mk(xk + r) = f(xk) + ∇f(xk)T r +
1

2
rT Hf (xk)r.

To control that we are doing well, is checked whether the trust radius is
adequate. Hence, the predicted reduction mk(xk) − mk(xk + rk) and the
actual reduction f(xk)− f(xk + rk) are compared. For a given parameter µ if

(

ρk =
f(xk) − f(xk + rk)

mk(xk) − mk(xk + rk)

)

> µ, (5.19)

holds, the trust region and the step are accepted. Otherwise the radius is
reduced and the direction is optimized again, see Figure 5.13. When the
prediction works very well, we can increase the trust region. Given a second
parameter ν > µ, if
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Fig. 5.13. For different trust radius different directions are optimal.

ρk > ν,

the trust radius is increased by some factor up to its maximum value ∆. The
general method is given in Algorithm 19. In the algorithm the factors 1/2, 2
for decreasing and increasing the trust radius are fixed. However, other values
can be used.

The approximate function mk(x) can be minimized by various meth-
ods. As in the case of line search, we do not necessarily need the exact
optimal solution. An easy method is to minimize the linear approximation,
min‖r‖<∆{f(xk) + ∇f(xk)T r}. Its solution is the steepest descent direction,

Algorithm 19 TrustRegion(∆, f,mk, x0, µ, ν)

k := 1, ∆ := ∆
while (termination condition does not fulfill)

rk := argmin‖r‖<∆ mk(xk + r)

if (ν < ρk)

∆ := max{2∆, ∆}
else

while (ρk < µ)
∆ := ∆/2
rk := argmin‖r‖<∆ mk(xk + r)

endwhile

xk+1 := xk + rk

k := k + 1
endwhile
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r = −∇f(xk)/‖∇f(xk)‖, where one only has to minimize the step length
bounded to be less than the trust radius. The optimal step size can be given di-
rectly. Consider rk = λr, where ‖r‖ = 1 is normalized. When rT Hf (xk)r ≤ 0,
mk(x+λr) is concave (or linear), descending in the direction of r. So the opti-
mal step size is ∆. If it is convex, the minimum is taken either at the stationary

point, where ∂mk(x+λr)
∂λ

= ∇f(xk)T r + λrT Hf (xk)r = 0, (λ = −∇f(xk)T r

rT Hf (xk)r
), or

at the maximum step size ∆, when the stationary point is outside;

λ =







∆ if rT Hf (xk)r ≤ 0,

min

{ ‖∇f(xk)‖
rT Hf (xk)r

,∆

}

, otherwise.
(5.20)

Notice, that in this case the method is following a steepest descent method
with a bounded line search. Consequently, the convergence near the optima
is similar to that of the steepest descent method.

Example 5.13. Consider the problem in Example 5.9 with f(x) = (x1 − 3)2 +
3(x2 − 1)2 + 2 and x0 = (0, 0)T . The initial trust radius is taken ∆0 = 1,
and the maximum trust radius ∆ = 2. The first direction is (1, 1)T as in
Example 5.9. Now the step length is λ = 1 according to (5.20). This gives
as next iterate x1 = ( 1√

2
, 1√

2
). The function to minimize is quadratic, so the

predicted reduction is the same as the actual one. For formula (5.19) this
means that ∀ k ρk = 1 and so ∆ = 2. In the rest of the steps the trust radius
is always greater than the optimal step size. The iterates follow the steepest
descent algorithm from this point. The run is depicted in Figure 5.14.

x2

x*

x1

Fig. 5.14. Trust region method on the function f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2
with x0 = (0, 0)T and ∆0 = 1.

Other approaches to solve (5.18) are the Dogleg method using Newton
direction and the Steihaug’s approach with Levenberg-Marquardt idea. Also
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the Conjugate gradient method has a Trust region version. For details see e.g.
Kelley (1999) and Nocedal and Wright (2006).

5.5 Algorithms for nonlinear regression

The least squares problem of minimizing f(β) =
∑m

i=1(z(xi, β)−yi)
2 as intro-

duced in Section 2.7 has specific characteristics. Therefore, specific optimiza-
tion methods have been developed to minimize f(β). An important special
case is that of linear regression, where z is linear in β. For the ease of notation
we will describe the linear regression case as z(x, β) = xT β and elaborate the
minimization of its least squares around an example in Section 5.5.1.

The methods are based on the shape of the gradient and Hessean of f(β).
A useful concept is that of the so-called Jacobian being the m × n matrix of
partial derivatives with elements

Jij(β) =
∂z(xi, β)

∂βj

(β). (5.21)

The partial derivatives of f are ∂f(β)
∂βj

(β) = 2
∑m

i=1
∂z(xi,β)

∂βj
(β)(z(xi, β) − yi).

With the aid of the Jacobian and the error vector e(β) with elements ei =
z(xi, β) − yi they can be summarized as

∇f(β) = 2JT (β)e(β). (5.22)

The Hessean of f obtains a more sophisticated shape

Hf (β) = 2JT (β)J(β) + 2
m

∑

i=1

Hi(β)ei(β), (5.23)

where Hi(β) is now the Hessean of the error ei(β) of the ith observation. The
specific shape of gradient and Hessean gives rise to dedicated methods for
optimizing f that are described in the following subsections.

5.5.1 Linear regression methods

The optimization of the sum of absolute values f(β) =
∑ |xT

i β − yi| or the
infinite norm (maximum error) f(β) = maxi |xT

i β − yi| can be written as
Linear Programming. The least squares criterion leads to the minimization of
a quadratic function. Let us first of all remark that the Jacobian is a constant
matrix X which does not depend on the parameter values in β. This makes
that we can write the least squares criterion in linear regression as

f(β) = (Xβ − y)T (Xβ − y) = βT XT Xβ − 2yT Xβ + yT y, (5.24)
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which is a quadratic function in β. If the columns of X are linearly dependent,
the minimum points can be found on a lower dimensional plane. If they are
independent the minimum point is the stationary point of (5.24)

β∗ = (XT X)−1XT y (5.25)

if we follow equation (3.21). Notice that the same follows from finding a
stationary point; ∇f(β) = 2XT (Xβ− y) = 0. The Hessean 2XT X is positive
semi-definite and its inverse has an important interpretation in statistics where
the so-called variance-covariance matrix of the estimated β∗ is proportional
to (XT X)−1, see Bates and Watts (1988). The ellipsoidal level sets f(β) −
f(β∗) = (β − β∗)T XT X(β − β∗) < δ have the interpretation of confidence
regions in statistics.

m
as

s 
y

12

10

8

6

4

2

0

stage
543210

Fig. 5.15. Observations and estimated model of mass as function of stage

Example 5.14. We want to explain the mass y of a plant from its growth stage
with a simple linear model y = β1 + β2stage. The observed data points of
stage 0 to 5 are given by y = (1, 2, 4, 7, 9, 10)T . The X matrix is given by

X =

(

1 1 1 1 1 1
0 1 2 3 4 5

)T

,

such that

XT X =

(

6 15
15 55

)

and XT y =

(

33
117

)

.

Following (5.25) gives the least squares estimate

β∗ =

(

6 15
15 55

)−1 (

33
117

)

=

(

0.57
1.97

)

.

The corresponding model is y = z(stage, β∗) = 0.57 + 1.97stage. Data points
and model are illustrated in Figure 5.15.
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5.5.2 Gauss-Newton and Levenberg-Marquardt

The method of Newton for least squares functions is given by

βk+1 = βk − 2H−1
f JT (βk)e(βk), (5.26)

where Hf is defined by the complicated expression (5.23). As it would be
complicated to evaluate all Hesseans Hi in (5.23), one can use approximations
with the idea that either z is linear in β or the idea that the error terms ei

are small.
The concept of the Gauss-Newton method is to approximate Hf by the first

part 2JT (βk)J(βk). Alternatively, one can say that the model z is linearized
around βk. The resulting search direction of Gauss-Newton is

rk = −(JT (βk)J(βk))−1JT (βk)e(βk), (5.27)

which is a descent direction as JT J is a positive semi-definite matrix. It can
be shown that for many instances, taking the final step sizes as 1 leads to
convergence.

Example 5.15. A researcher investigates the effect of dosing two nutrients on
the yield of tomatoes. Therefore he performs 4 experiments in separated fields.
The resulting data are given in Table 5.8. The expected relation is

yield = (1 + β1dose1)(1 + β2dose2), (5.28)

where β1 and β2 are reaction parameters. The least squares function to be
optimized is f(β) =

∑4
1((1 + β1dose1i)(1 + β2dose2i) − yieldi)

2. The result-
ing Jacobian has rows (dose1i(1 + β2dose2i), dose2i(1 + β1dose1i)). Consider

Table 5.8. Observed yield of tomatoes and nutrient dosage

experiment 1 1 3 4

dose 1 1.0 1.0 1.0 2.0
dose 2 0.0 1.0 2.0 0.0
yield 0.5 5.0 6.5 1.0

starting vector β0 = (1, 1)T , with sum of squared errors f(β0) = 19.5. The
error vector itself is e(β0) = (1.5,−1,−0.5, 2)T and the Jacobian

J0 = J(β0) =

(

1 2 3 2
0 2 4 0

)T

and JT
0 J0 =

(

18 16
16 20

)

,

such that the resulting steepest descent direction is

r = −∇f(β0) = −2JT (β0)e(β0) =

(

−4
8

)

.
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The Gauss-Newton direction is determined by

r = −
(

18 16
16 20

)−1 (

2
−4

)

=

(

−1
1

)

.

This is a descent direction, as it makes a sharp angle with −∇f(β0).

One of the most used algorithms is due to Levenberg-Marquardt, which
has been implemented in most statistical software, Marquardt (1963). The
basic iteration scheme is based on

βk+1 = βk − (JT (βk)J(βk) + αkE)−1JT (βk)e(βk), (5.29)

where E is the unit matrix and αk implicitly determines the step size. For α
big, the methods follows the steepest descent. For smaller α, it looks more
like the Gauss-Newton method. Usually a scheme is followed where the size
of αk is reduced during the iterations.

5.6 Algorithms for constrained optimization

We write the generic NLP problem now as

min f(x)
s.t. gi(x) ≤ 0 i = 1, . . . , p, inequality constraints,

gi(x) = 0 i = p + 1, . . . ,m, equality constraints.
(5.30)

Until now we have ignored the presence of the constraints g and searched for
the optimum in the whole space. When dealing with constraints, there are
two main options to take. One is to convert the problem into unconstrained
problem(s) by embedding the constraints in the objective function, or directly
restricting the search to the feasible area. In the first case, the new uncon-
strained problems are not equivalent to the original problem, but using some
parameters, their solutions tend to the solution of the constrained problem.
In this way the previously discussed methods can be used to solve these new
problems. In this type of methods, the question is how to embed the con-
straints in the objective. We will discuss the Penalty and Barrier function
method in Section 5.6.1.

In the other case, directly restricting the search to the feasible area, we
usually modify an unconstrained method. Starting from a feasible point, the
direction and step length of the original method is modified such that the new
point is also feasible. Such methods are the Gradient projection method and
Sequential quadratic programming discussed in Sections 5.6.2 and 5.6.3.

5.6.1 Penalty and Barrier function method

The penalty function method was introduced by Zangwill (1967) and also by
Pietrzykowski (1969). The main idea of the method is to penalize infeasibility.
The penalty functions
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pµ(x) = µ





p
∑

i=1

max{gi(x), 0} +
m

∑

i=p+1

|gi(x)|





and

pµ(x) = µ





p
∑

i=1

(max{gi(x), 0})2 +
m

∑

i=p+1

g2
i (x)





are 0 when x is feasible, but take a positive value at infeasible points. Adding
the penalty function to the objective function, Pµ(x) = f(x) + pµ(x), we get
an unconstrained problem for every value of µ,

minPµ(x). (5.31)

It means that the objective function of the converted unconstrained problem
has high values at infeasible areas. The minimizer of (5.31) approximates
the minimizer of (5.30) for a value of µ that is high enough. However, it
is not known apriori how high µ should be. The minimizer can be far from
feasibility even for a relatively high µ value. Moreover, choosing a high value
for µ can result into a so-called ill-conditioned problem. It means that the
penalty function has values much larger in order of magnitude than f(x).
Numerical methods can fail or give false results in such cases.

To resolve this problem, the penalty function method works as follows
(see Algorithm 20). Solve the penalized unconstrained problem minPµ(x) for
a given value for µ. If the minimizer x∗(µ) fulfills pµ(x∗(µ)) ≤ ǫ, x∗(µ) is
accepted as an approximate solution. Otherwise the value of µ is increased
and the penalized unconstrained problem solved until the above condition is
fulfilled. The minimization of the next unconstrained problem starts from the
last minimum, to reach the solution in fewer steps. Moreover, one prevents
ill-conditioning in the neighborhood of the optimization path.

Algorithm 20 PenaltyMethod(f, g, p, µ0, β, ǫ)

k := 1
xk := argmin Pµ(x)
while (pµ(xk) > ǫ)

k := k + 1
µk := β · µk−1

xk := argmin Pµ(x)
endwhile

Example 5.16. Consider the problem

min 5 − ex

s.t. x = 1.



5.6 Algorithms for constrained optimization 123

The constraint defines minimum point x∗ = 1. Taking pµ(x) = µ(x− 1)2, the
unconstrained problem is

min{5 − ex + µ(x − 1)2}.

Setting µ0 = 1 and β = 2, the objective function of the first four unconstrained
problems is depicted in Figure 5.16. The solution xk tends to 1 as µk goes to
infinity.

10

5

0

-5
-1 0 1 2 3 4

Fig. 5.16. The functions Pµ(x) for µ = 1, 2, 4, 8.

Example 5.17. The penalty function method is used to find the solution of

min x2
1 + x2

2

s.t. x1 + x2 = 2.

Using the quadratic penalty function, we minimize

Pµ(x1, x2) = x2
1 + x2

2 + µ(x1 + x2 − 2)2.

The first order necessary conditions in minimum point x∗(µ) are

∂Pµ

∂x1
= 0

∂Pµ

∂x2
= 0.

Thus, 2x1 + µ2(x1 + x2 − 2) = 0 and 2x2 + µ2(x1 + x2 − 2) = 0, from which
x1 = x2 = 2µ

2µ+1 . In Table 5.9 we can see that xk tends to the solution

x∗ = (1, 1) if the unconstrained problems are exactly solved using µ0 = 1 and
β = 4.
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Table 5.9. Steps by the penalty function method for Example 5.17.

k µ xk

0 1 (0.7500, 0.7500)
1 4 (0.8888, 0.8888)
2 16 (0.9696, 0.9696)
3 64 (0.9922, 0.9922)
4 256 (0.9980, 0.9980)
5 1024 (0.9995, 0.9995)
6 4096 (0.9998, 0.9998)

One can observe that the solution reached by the penalty function method
and all subsequent points are infeasible. Therefore in applications, where
feasibility is strictly required, penalty function methods cannot be used. In
such cases barrier function methods are more appropriate.

Barrier functions make a barrier at the constraints such that xk can only
be situated in the interior of the feasible area. If the minimizer of the original
problem is on the boundary of the feasible region, xk tends to the boundary
from the interior. It also means that the barrier function method works only
with inequality constraints (there is no interior for an equality constraint).
For instance the barrier functions

bµ(x) = −µ

p
∑

i=1

1

gi(x)

and

bµ(x) = −µ

p
∑

i=1

ln(−gi(x))

give positive values for strictly feasible points and infinity when gi(x) = 0 for
some i. Note that the barrier function at infeasible points is not necessarily
defined. In contrast to the penalty function method we do have to take care
not to leave the feasible area while minimizing Bµ(x) = f(x) + bµ(x). One
could think that in this way the problem did not become easier as we still
have the constraints to be taken into account. Although this latter is true,

Algorithm 21 BarrierMethod(f, g, b, µ0, β, ǫ)

k := 1
xk := argminx∈X Bµ(x)
while (bµ(xk) > ǫ)

k := k + 1
µk :=

µk−1

β

xk := argminx∈X Bµ(x)
endwhile
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for the new problems none of the constraints are active, so any unconstrained
method can be used with some safeguards.

In Algorithm 21 a general barrier function method is given. The algorithm
is mainly the same as the penalty function method except that here µ tends
to zero in order to have Bµ(x) → f(x).

Example 5.18. Consider the barrier function method for a variant of the prob-
lem in Example 5.17,

min x2
1 + x2

2

s.t. x1 + x2 ≥ 2.

Using the logarithmic barrier function, our new problem is to minimize
Bµ(x1, x2) = x2

1 + x2
2 − µ ln(x1 + x2 − 2). The solution must satisfy the

first order optimality condition, that is,

∂Bµ

∂x1
= 2x1 − µ

1

x1 + x2 − 2
= 0

∂Bµ

∂x2
= 2x2 − µ

1

x1 + x2 − 2
= 0.

Solving these equations, we get that x∗(µ) = (1
2 + 1

2

√
1 + µ, 1

2 + 1
2

√
1 + µ).

In Table 5.10 the run of the Barrier function method is given for µ0 = 1 and
β = 2. We assume the exact optimum is found by the local optimizer.

Table 5.10. Steps by the Barrier function method for Example 5.18.

k µ xk

0 1 (1.2071, 1.2071)
1 0.5 (1.1123, 1.1123)
2 0.25 (1.0590, 1.0590)
3 0.125 (1.0303, 1.0303)
4 0.0625 (1.0153, 1.0153)
5 0.03125 (1.0077, 1.0077)
6 0.015625 (1.0038, 1.0038)

For the barrier function method every subproblem is ill-conditioned, as Bµ

is unbounded at the constraints. Hence, the logarithmic barrier function is
used generally, as it grows in a less dramatic way than 1

x
. Because of the ill-

conditioning problem, the above methods are not prevalent. In the followings
we will discuss more practical methods.

5.6.2 Gradient projection method

This method is a modification of the steepest descent method (see Section
5.4.1) for constrained optimization. It was developed in the early 60’s by
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Rosen (1960, 1961) and later improved by Haug and Arora (1979). At every
step the new direction is modified in order to stay in the feasible region by
projecting the gradient to the active constraints. In Figure 5.17 the negative
gradient of the objective −∇f(x), the constraint g(x) and its gradient ∇g(x)
are depicted together with the projected direction r.

)(xg

f=4

f=16

)(xf∇−

r

f=1

f=4

)(xg∇

Fig. 5.17. The projected gradient direction.

The projection is done by a projection matrix, that is, r = −P∇f . Let M
be the Jacobian matrix of the active constraints; it consists of column vectors
∇gi(x) for these constraints for which gi(x) = 0. The projection matrix can
be computed as

P = I − M(MT M)−1MT .

But let see, how to get this formula. We know that for every active constraint
the direction r is perpendicular to its gradient, ∇gT

i r = 0, such that

MT r = 0.

The steepest descent direction along the binding constraint can be obtained
by solving the problem

min rT∇f

s.t. MT r = 0, (5.32)

||r||2 = 1.

That is, we are searching for the most negative direction, which has unit
length. Using the Lagrangean (see Section 3.5.1) of (5.32),

L(r, u, v) = rT∇f + rT Mu + vrT r,

where u ∈ R
n, v ∈ R, ||r||2 = rT r, the necessary condition for optimality is
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∂L

∂r
= ∇f + Mu + 2vr = 0. (5.33)

Multiplying (5.33) by MT and considering MT r = 0,

MT∇f + MT Mu + 2vMT r = MT∇f + MT Mu = 0,

from which
u = −(MT M)−1MT∇f.

Substituting in (5.33) gives the projected direction

r = − 1

2v
(E − M(MT M)−1MT )∇f.

The factor 1
2v

can be omitted, as r stands for a direction. Remember, the
step length is determined by the line search. When r = 0 and u ≥ 0 the
Kuhn-Tucker conditions are satisfied, thus we have found a KKT point. If
some Lagrangian multipliers are negative (ui < 0 for some i), that means we
may still find a decreasing direction by removing constraints with ui < 0. In
fact the negative multiplier means that the corresponding constraint is not
binding for the decreasing direction. Usually, first the constraint with the
most negative Lagrange multiplier is removed from the active constraints and
r is calculated again. If r 6= 0, a decreasing direction is found. Otherwise we
remove more constraints with negative Lagrange multipliers. If there is no
more ui < 0, but r = 0, we can stop. We have reached a point where the
Karush-Kuhn-Tucker conditions hold.

After finding a feasible direction r, we want to obtain the optimal step
length λ = argminµ>0 f(xk + µr), such that the new iterate fulfills the non-
binding constraints, i.e. gi(xk + λr) ≤ 0. In fact the constraint that be-
comes binding first along direction r determines the maximum step length
λmax. Specifically for a linear constraint aT

i x − bi ≤ 0, λ should satisfy

aT
i (xk + λr) − bi ≤ 0, such that λmax ≤ bi−aT

i xk

aT
i

r
over all linear constraints.

The main procedure is elaborated in Algorithm 22 for the case where only
linear constraints exist.

Example 5.19. Consider the problem

min x2
1 + x2

2,

s.t. x1 + x2 ≥ 2,

−2x1 + x2 ≤ 1,

x1 ≥ 1
2 .

Let x0 be (0.5, 2)T . The gradient is ∇f(x) = (2x1, 2x2)
T
, so at x0 we have

∇f(x0) = (1, 4)
T
. We can see that the second and third constraint are active,

but not the first. Thus, M =

(

−2 −1
1 0

)

, (MT M)−1 =

(

1 −2
−2 5

)

, and we
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Algorithm 22 GradProj(f, g, x0, ǫ)

k := 0
do

r := −(E − M(MT M)−1MT )∇f
while (r = 0)

u := −(MT M)−1MT∇f
if (mini ui < 0)

Remove gi from the active constraints and recalculate r
else

return xk (a KKT point)
endwhile

λ := argminµ f(xk + µr)
if ∃i gi(xk + λr) < 0

Determine λmax

λ = λmax

xk+1 := xk + λr
k := k + 1

while(|xk − xk−1| > ǫ)

get P =

(

0 0
0 0

)

. Hence, r = 0. Now, computing the Lagrangean coefficients

u = (−4, 9), we can see that the second constraint (with coefficient −4) does
not bind the steepest descent direction, so that should not be considered in

the projection. Thus, M =

(

−1
0

)

, P =

(

0 0
0 1

)

and r =

(

0
−4

)

. We can

normalize to r = (0,−1)
T

and compute the optimal step length λ. One can
check that the minimum of f(xk + λr) is 2, but the originally nonbinding
constraint, g1 is not fulfilled with such a step. To satisfy g1(xk + λr) ≥ 0, the
maximum step length 0.5 is taken, so x1 = (0.5, 1.5)T .

Now the two binding constraints are g1 and g3, while ∇f(x1) = (1, 3)
T
.

Corresponding M =

(

−1 −1
−1 0

)

is nonsingular, P = 0 and r = 0. Checking

the Lagrangeans we get u = (3,−2)T , that means g3 does not have to be
considered in the projection. With the new M = (−1,−1)T the projection

matrix P = 1
2

(

1 −1
−1 1

)

, and so r = (1,−1)
T
. The optimal step length

λ = argminµ f(xk + µr) = 0.5, with which x2 = (1, 1)T satisfies all the
constraints. One can check that x2 is the optimizer (a KKT point) by having
P = 0 and u ≥ 0. The problem and the steps are depicted in Figure 5.18.

For nonlinear constraints an approximate maximum value of λ can be cal-
culated using the linear approximations of the constraints. Another approach
is to use a desired reduction of the objective, like f(xk)−f(xk+1) ≈ γ ·f(xk).
Using this assumption we get directly the step length, see Haug and Arora
(1979).
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Fig. 5.18. The steps for Example 5.19.

In case of nonlinear constraints, we also have to take care that the new
iterate is not violating the active constraints. As we are moving perpendicular
to the gradients of the constraints, we may need to do a restoration move to
get back to the feasible area as illustrated in Figure 5.19.
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Fig. 5.19. The projected and the restoration move.

The idea of projecting the steepest descent can be generalized for other
descent direction methods. One simply has to change −∇f to the desired
direction in Algorithm 22 to obtain the projected version of a descent direction
method.

In the next section we are going to discuss the sequential quadratic pro-
gramming which is also called the projected Lagrangean method.
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5.6.3 Sequential quadratic programming

To our knowledge SQP was first introduced in the Ph.D. thesis of Wilson
(1963), later modified by Han (1976) and Powell (1978). SQP can be viewed
as a modified Newton method for constrained optimization. Actually it is a
Newton method applied to the KKT conditions. As the name of the method
tells us, a sequence of quadratic programming problem is solved. That is, at
every iteration the quadratic approximation of the problem is solved, namely
the quadratic approximation of the Lagrangean function with the linear ap-
proximation of the constraints.

Let us start with equality constrained problems,

min f(x)

s.t. g(x) = 0.
(5.34)

The KKT conditions for (5.34) are

∇f(x) + u∇g(x) = 0

g(x) = 0.
(5.35)

Observe that the first KKT equation says the gradient (with respect to the
x−variables) of the Lagrangean should be zero , i.e. ∇xL(x, u) = 0. In Section
5.4.2, we discussed that the Newton method can be used to determine a
stationary point. To work with the same idea, we define ∇2

xL(x, u) as the
Hessean of the Lagrangean with respect to the x-variables. To solve (5.35),
the iterates are given by xk+1 = xk + r, uk+1 = uk + v, where r, v are the
solutions of

(

∇2
xL(xk, uk) ∇g(xk)
∇g(xk)T 0

) (

r
v

)

= −
(

∇xL(xk, uk)
g(xk)T

)

. (5.36)

Example 5.20. Consider the problem

min (x1 − 1)2 + (x2 − 3)2

s.t. x1 = x2
2 − 1.

Our constraint is g(x) = −x1 + x2
2 − 1 = 0 and the Lagrangean is L(x, u) =

(x1 − 1)2 + (x2 − 3)2 + u(x1 − x2
2 + 1). The gradients are ∇xL(x, u) =

(2(x1 − 1) + u, 2(x2 − 3) − 2x2u)
T

and ∇g(x) = (−1, 2x2)
T , and the Hessean

for L is ∇2
xL(x, u) =

(

2 0
0 2 − 2u

)

.

Denoting by N the matrix of (5.36) and by rhs the right hand side vector,

we have N =





2 0 −1
0 2 − 2u 2x2

−1 2x2 0



 and rhs =





2(1 − x1) − u
2(3 − x2) + 2x2u

x1 − x2
2 + 1



 .
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Consider as starting point x0 = (0, 0)T and starting value for the mul-

tiplier u0 = 2. This gives N0 =





2 0 −1
0 6 0

−1 0 0



 and rhs0 =





4
6

−1



 giv-

ing a solution of (5.36) of (rT , v) = (1, 1,−2), such that x1 = (1, 1)T and

u1 = 0. Following this process, N1 =





2 0 −1
0 2 2

−1 2 0



 and rhs1 =





0
4

−1



 .

Now (rT , v) = (1, 0, 2), such that we reach the optimum point x2 = (2, 1)T

with u2 = 2. This point fulfills the KKT conditions.

f = 0.25
f = 2.25

x1

x2

g(x)

x0

x2

Fig. 5.20. Iterates in Example 5.20

Figure 5.20 shows the constraint, contours and the iterates. Moreover,
a second process is depicted which starts from the same starting point x0 =
(0, 0)T , but takes for the multiplier u0 = 0. One can verify that more iterations
are needed.

Applying the same idea to inequality constrained problems requires more
refinement; one has to take care of complementarity and the nonnegative sign
of the multipliers.

5.7 Summary and discussion points

• Nonlinear programming methods can use different information on the in-
stance to be solved; the fact that the function value is higher in different
points, the value of the function, the derivative or second derivative.
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• Interval methods based on bracketing, bisection and the golden section
rule lead to a linear convergence speed.

• Interpolation methods like quadratic and cubic interpolation and the
method of newton are usually faster, require information of increased order
and safeguards to force convergence for all possible instances.

• The method of Nelder-Mead and the Powell method can be used when
no derivative information is available and even when functions are not
differentiable. The latter method is usually more efficient, but we found
the first more in implementations.

• Many NLP methods use search directions and one-dimensional algorithms
to do line search to determine the step size.

• When (numerical) derivative information is used, the search direction can
be based on the steepest descent, conjugate gradient methods and quasi-
Newton methods.

• Nonlinear regression has specific methods that exploit the structure of the
problem, namely Gauss-Newton and Levenberg-Marquardt method.

• For constrained problems there are several approaches; using penalty ap-
proaches or dealing with the constraints in the generation of search di-
rections and step sizes. In the latter the iterative identification of active
(binding) constraints is a major task.

5.8 Exercises

1. Given f(x) = (x2 − 4)2, starting point x0 = 0 and accuracy ǫ = 0.1.
(a) Generate with the bracketing algorithm an interval [a, b] which con-

tains a minimum point of f .
(b) Apply the golden section algorithm to reduce [a, b] to an interval

smaller in size than ǫ which contains a minimum point.

2. Given Algorithm 23, function f(x) = x2 − 1.2x + 4 on interval [0, 4] and
accuracy ǫ = 10−3.

Algorithm 23 Grid3([a, b], f, ǫ)

Set k := 1, a1 := a and b1 := b
x0 := (a + b)/2, evaluate f(x0)
while (bk − ak > ǫ)

l := ak + 1
4
(bk − ak), r := ak + 3

4
(bk − ak)

evaluate f(l) and f(r)
xk := argmin{f(l), f(xk−1), f(r)}
ak+1 := xk − 1

4
(bk − ak), bk+1 := xk + 1

4
(bk − ak)

k := k + 1
endwhile
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(a) Perform 3 iterations of the algorithm.

(b) How many iterations are required to reach the final accuracy?

(c) How many function evaluations does this imply?

3. Given Algorithm 24 for finding a minimum point of 2D function f : R
2 →

R, function f(x) = 2x2
1 + x2

2 + 2 sin(x1 + x2) on interval [a, b] with a =
(−1,−1)T and b = (1, 0)T and accuracy ǫ = 10−3.

Algorithm 24 2DBisect([a, b], f, ǫ)

Set k := 0, a0 := a and b0 := b
while (‖bk − ak‖ > ǫ)

xk := 1
2
(ak + bk)

Determine ∇f(xk)

if ∂f

∂x1
(xk) < 0, ak+1,1 := xk,1 and bk+1,1 := bk,1

else ak+1,1 := ak,1 and bk+1,1 := xk,1

if ∂f

∂x2
(xk) < 0, ak+1,2 := xk,2 and bk+1,2 := bk,2

else ak+1,2 := ak,2 and bk+1,2 := xk,2

k := k + 1
endwhile

(a) Perform 3 iterations of the algorithm. Draw the corresponding inter-
vals [ak, bk] which enclose the minimum point.

(b) Give an estimate of the minimum point.

(c) How many iterations are required to reach the final accuracy?

4. Given function f(x) = x2
1+4x1x2+x2

2+ex2
1 and starting point x0 = (0, 1)T .

(a) Determine the steepest descent direction in x0.

(b) Determine the Newton direction in x0. Is this a descent direction?

(c) Is Hf (x0) positive definite?

(d) Determine the stationary points of f .

5. Given an NLP algorithm where the search directions are generated as fol-
lows, r0 := −∇f(x0), the steepest descent and further rk := −Mk∇f(xk),
with Mk := I + rk−1r

T
k−1, where I is the unit matrix.

(a) Show that Mk is positive definite.

(b) Show that rk coincides with the steepest descent direction if exact line
minimization is used to determine the step size.

6. Given quadratic function f(x) = x2
1 − 2x1x2 + 2x2

2 + −2x2 and starting
point x0 = (0, 0)T .

(a) Determine the steepest descent direction r0 in x0.

(b) Determine the step size in direction r0 by line minimization.

(c) Given that M0 is the unit matrix, determine M1 via the BFGS update.

(d) Determine corresponding BFGS direction r1 = −M1∇f(x1) and per-
form a line search in that direction.
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(e) Show in general that the quasi-Newton condition holds for BFGS, i.e.
rk = Mk+1yk.

7. Three observations are given, x = (0, 3, 1)T and y = (1, 16, 4)T . One
assumes the relation between x and y to be

y = z(x, β) = β1e
β2x. (5.37)

(a) Give estimation of β as minimization of the sum of (yi − z(xi, β))2.

(b) Draw observations xi, yi and prediction z(xi, β) for β = (1, 1)T .

(c) Determine the Jacobian J(β).

(d) Determine the steepest descent direction in β0 = (1, 0)T .

8. Using the infinite norm in nonlinear regression leads to a nondifferentiable
problem minimizing f(β) = maxi |yi − z(xi, β)|. Algorithm 25 has been
designed to generate an estimation of β given data xi, yi, i = 1, . . . ,m.
In the algorithm, Ji(β) is row i of the Jacobian. Data on the length

Algorithm 25 Infregres(z, x, y, β0, ǫ)

k := 0
repeat

Determine f(βk) = maxi |yi − z(xi, βk)|
direction r := 0
for (i = 1, . . . , m) do

if (yi − z(xi, βk) = f(βk))
r := r + Ji(β)

if (z(xi, βk − yi) = f(βk))
r := r − Ji(β)

λ := 5
while (f(βk + λrk) > f(βk))

λ := λ
2

endwhile

βk+1 := βk + λrk

k := k + 1
until (‖βk − βk−1‖ > ǫ)

x and weight y of 4 students is given; x = (1.80, 1.70, 1.60, 1.75)T and
y = (90, 80, 60, 70)T . The model to be estimated is y = z(x, β) = β1 +β2x
and initial parameter values β0 = (0, 50)T .

(a) Give an interpretation of the while-loop in Algorithm 25. Give an
alternative scheme for this loop.

(b) Draw in an x, y-graph the observations and the line y = z(x, β0).

(c) Give values β for which f(β) is not differentiable.

(d) Perform two iterations with Algorithm 25 and start vector β0. Draw
the obtained regression lines z(x, βk) in the graph made for point (b).
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(e) Give the formulation of an LP problem which solves the specific esti-
mation problem of minβ f(β).

9. In order to find a feasible solution of a set of inequalities gi(x) ≤ 0, i =
1, . . . ,m, one can use a penalty approach in minimizing f(x) = maxi gi(x).
(a) Show with the definition that f is convex if gi is convex for all i.
(b) Given g1(x) = x2

1 − x2, g2(x) = x1 − x2 + 2. Draw the corresponding
feasible area in R

2.
(c) Give a point x for which f(x) is not differentiable.
(d) For the given set of inequalities, perform two iterations with Algorithm

26 and start vector x0 = (1, 0).
(e) Do you think Algorithm 26 always converges to a solution of the set

of inequalities if a feasible solution exists?

Algorithm 26 feas(x0, gi(x), i = 1, . . . ,m)

Set k := 0, determine f(x0) = maxi gi(x0)
while (f(xk) > 0)

determine an index j ∈ argmaxi gi(xk)
search direction rk := −∇gj(xk)
λ := 1
while (f(xk + λrk) > f(xk))

λ := λ
2

endwhile

xk+1 := xk + λrk

k := k + 1
endwhile

10. Linear Programming is a special case of NLP. Given problem

max
X

f(x) = x1 + x2, X = {x ∈ R
2|0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3}. (5.38)

An NLP approach to solve LP is to maximize a so-called logbarrier func-
tion Bµ(x) where one studies µ → 0. In our case

Bµ(x) = x1 + x2 + µ(ln(x1) + ln(x2) + ln(4 − x1) + ln(3 − x2)). (5.39)

Given points x0 = (4, 1)T and x1 = (1, 1)T .
(a) Show that x0 does not fulfill the KKT conditions of problem (5.38).
(b) Give a feasible ascent direction r in x0.
(c) Is f(x) convex in direction r?
(d) For which values of x ∈ R

2 is Bµ defined?
(e) µ = 1, Determine the steepest ascent direction in x1.
(f) µ = 1, Determine the Newton direction in x1.
(g) Determine the stationary point x∗(µ) of Bµ.
(h) Show that the KKT conditions are fulfilled by limµ→0 x∗(µ).
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(i) Show that Bµ is concave on its domain.

11. Given optimization problem maxX f(x) = (x1 − 1)2 + (x2 − 1)2, X =
{x ∈ R

2|0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4} and x0 = (3, 2)T . One can try to
obtain solutions by maximizing the so-called shifted logbarrier function
Gµ(x) = f(x) + µ

∑

i ln(−gi(x) + 1), which in this case is

Gµ(x) = (x1−1)2+(x2−1)2+µ(ln(x1+1)+ln(x2+1)+ln(7−x1)+ln(5−x2)).

(a) For which values of x ∈ R
2 is Gµ defined?

(b) Determine the steepest ascent direction of G3(x) in x0.
(c) Determine the Newton direction of G3(x) in x0.
(d) For which values of µ is Gµ concave around x0.

12. Find the minimum of NLP problem min f(x) = (x1 − 3)2 + (x2 −
2)2, g1(x) = x2

1 − x2 − 3 ≤ 0, g2(x) = x2 − 1 ≤ 0, g3(x) = −x1 ≤ 0
with the projected gradient method starting in point x0 = (0, 0)T .

13. Find the minimum of NLP problem min f(x) = x2
1 + x2

2, g(x) = e(1−x1) −
x2 = 0 with the sequential quadratic programming approach, starting
values x0 = (1, 0)T and u0 = 0.



 

6.1 Steepest Descent Method 
 

As motivation consider the membrane problem with small deformation and in a  
 

steady state so that the potential energy in a minimum. 
 
 

Potential Energy ( )2 21 1x yT u u dxdy fu x y≅ + + − − ∆ ∆   

 
    =  surface tension   +  external work ,  where 

 
T = tension,  
 
u = deformation and  
 
f is external pressure on the membrane. 

 
 

Use f(p) 1 p≡ + ≅ f(0) + f ’(0)p 

 

   = 1 + 0

1 1
( 0)

2 1 p
p

p
= −

+
= 1 + 1/2 p. 

 
Let p = ( )2 2

x yu u+  so that 

 

( )2 2 2 21
1 1

2x y x yu u u u+ + − ≅ +  

 

P(u) = ( )2 21
2 x yu u fu dxdy

Ω

 + − 
 ∫∫  is an approximation of the total potential energy. 

 
 

One can show the following are equivalent formulations: 
 
 1.   Potential Energy  
 
      P(u) = min P(v) where v is in a "suitable" set of functions, S. 
 
 



 2

 
 2.   Weak Form 
 
  ( ) 0x x y yT u u fϕ ϕ ϕ+ − =∫∫ ∫∫ , for all “suitable” ϕ  

     
 
3.   Classical Form 
 

-T( )xx yyu u f+ = . 

 
For example, to show a potential energy solution is a weak solution, use u λϕ+  in  
 
P(u) so that f(l) = P ( )u λϕ+  is a function of the real number l.  Because u minimizes the  

 
potential energy, l = 0 will minimize f(l) so that f ‘(0) = 0, which corresponds to the  
 
weak equation. 

 
Consider Ax = d where A is SPD and is from the classical form.  The linear system  
 

is related to the potential energy form where 
 

J(x ) =
1
2

T Tx Ax x d− , from J(x) comes from the potential energy 

 
 

Algebraic Lemma.  J(y) = J(x) + 
1

( ) ( ) ( ) ( )
2

T Ty x A y x y x r x− − − −  

 
 
Proposition 1.  If A is SPD, then 1 and 2 are equivalent 
 

1. Ax  = d, 
 

2. J(x) = min J(y). 
 
 
Proof of Lemma. 
 
 Let ( )y x y x= + − . 

 Use TA A= . 



 3

 
 ( ) ( )J y J x y x= + −  

  ( )1
( ) ( ( )) ( ( ))

2
T Tx y x A x y x x y x d= + − + − − + −

 
1 1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2

T T T T T Tx Ax y x Ax x A y x y x A y x x d y x d= + − + − + − − − − −

       
1

( ) ( ) ( ) ( ) ( )
2

T T TJ x y x Ax y x d y x A y x= + − − − + − −  

=
1

( ) ( ) ( ) ( ) ( ).
2

T TJ x y x r x y x A y x− − + − −  

 

Proof  1  implies 2: 

            Ax = d  means r(x) =0. 

            Use the Algebraic Lemma, A being SPD  and  r(x) = 0 to get 

            J(y) = J(x) +
1
2

(y-x)TA(y-x) - 0 ≥ J(x). 

 

Proof  2  implies 1: 

           We want to show  r(x) = 0, that is, [r(x)]i = 0.  

This is equivalent  to showing [r(x)]i  ≥  0 and [r(x)]i  ≤  0. 

            Since y is arbitrary,  

              y = x + ( y - x) and choose y so that 

               y - x ≡ λei . 

                     J(y) = J(x +λei ) , by the Algebraic Lemma 

                    = J(x) +
1
2

(λei)TA(λei) -(λei)Tr(x)    
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                               = J(x) +
1
2

λ2aii - λ[r(x)]I 

 0 ≤ J(y) - J(x) = λ(
1
2

λaii -[r(x)]i ) 

Since A is SPD, aii  > 0 .   

(a)  Suppose [r(x)]i < 0 , 

            Let λ ↑ 0. 

            So  eventually  (
1
2

λaii -[r(x)]i ) >0, 

           This implies J(y) - J(x) < 0,  which is a contradiction. 

           Therefore, we must have  [r(x)]i ≥  0. 

(b)  Suppose [r(x)]i > 0 , 

            Let λ ↓ 0.  So  eventually (
1
2

λaii -[r(x)]i ) < 0, and this implies 

            J(y) - J(x) < 0, which is a contradiction.  

           Then we must have  [r(x)]i ≤  0. 

 

Idea for Steepest Descent Method: 

Let f(α ) = J(x0 + αp),  and p be some direction.  We want to choose α so that f(α) 

the smallest possible.  This is a simpler problem because f is a function of a single 

variable.  In order to choose the direction p so that the directional derivative of J(x) is 

the largest possible, we will need the following results. 
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Proposition 2.   1.  Cauchy Inequality. 

 |xTy|  ≤ ||x||2||y||2 

                                         2.  Directional Derivative. 

df

du
 = ∇f ⋅ u , where uTu = 1, 

df

du
 ≡ 

0
lim
t →

( ) ( )f x tu f x

t

+ −
 

                          3.  Direction of Steepest Descent. 

max u |
df

du
| = ||∇f ||2  when u ≡  ∇f /||∇f ||2   

 

Proof of 1 : 

                    0 ≤  f(t) ≡ (x + ty)T(x + ty)  

                               = xTx  + t2 xTy  + t2 yTy          , because x Ty = y Tx. 

                   f ‘(t1) = 0    implies  t1  = - x Ty/yTy .  

                   f “(t1) = 2 yTy > 0 ,  so  f(t1)  is the min. of  f(t). 

                   0 ≤ f(t1) = x Tx  + 2(-x Ty/yTy)(x Ty) + (- x Ty/yTy )2 (y Ty) 

                                                  = x Tx - (x Ty )2/yTy 

       This implies  (x Ty)2 ≤ (x Tx)(yTy) =(||x||2  ||y||2)2. 

 

Proof  of 2 : 

     
0

lim
t →

( ) ( )f x tu f x

t

+ −
    = 

0
lim
t →

 ( 1 2 2

1

( ( , ,.., )) ( (0, ,..., ))n nf x t u u u f x t u u

tu

+ − +
 u1 
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                             + 2 3

2

( (0, ,.., )) ( (0,0, ,..., ))n nf x t u u f x t u u

tu

+ − +
u2 

                             + ...... 

                             + 
( (0,...,0, )) ( (0,0,...,0))n

n

f x t u f x t

tu

+ − +
un  ) 

                           = fx1u1 + ... + fxnun   = ∇f ⋅ u 

 

Proof  of 3: 

            |
df

du
| = |∇f ⋅ u |   ≤   ||∇f ||2 ⋅ ||u||2   = ||∇f ||2  1 

Because  ||u||22 = (∇f /||∇f ||2 )T (∇f /||∇f ||2 )  = 1, 

we may choose u = ∇f /||∇f ||2.  Then for this u 

 
df

du
= ∇f ⋅ u = ∇f ⋅ (∇f /||∇f ||2) =  ||∇f ||2.   

Therefore, the largest possible |
df

du
|  is given by this u.  

 



6.2 Steepest Descent Algorithm in Multiple Directions  
 

 

Consider J(x0 + αp).  We want to choose α and p so that this is the smallest 

possible.  This is a simpler problem because α is a single number, and p is a direction so 

that J should decrease most rapidly. 

 

Proposition 3.  If A is symmetric, then the direction of steepest descent is 

   ∇J = -r(x). 

Proof. 

  

ˆ

,ˆ

, ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

1
[ ] ( )

2

1
( )
2

1
2

1 1
1 1 1 , use

2 2

[ ( ) ] .

T T
i

i

i ij j i i
i j ii

i ij j i i
i j ii i

j iij ii i ii ii
j i

jij i
j

i

J x Ax x d
x

x a x x d
x

x a x x d
x x

a x x a d a a

a x d

r x

∂
∇ = −

∂

∂
= −

∂

∂ ∂
= −

∂ ∂

= + − =

= −

= −

∑ ∑

∑ ∑

∑ ∑

∑

 

 

Proposition 4.  If A is SPD, then 

   
( ) min ( )where

ˆ ˆand .
T

T

J x J x r

r r
x x r

r Ar

α α

α α

+

+

= +

= + =
 

Proof. Let f(α) = J(x + αp)  where p = -r, and use the Algebraic Lemma to get 

   f(α) = J(x) + 1/2 α2 pTAp - αpTr. 



 2 

 Then f '(α) = 0 = α pTAp - pTr, and note pTAp > 0 for nonzero p. 

 Thus for p = -r we have α = -rTr / rTAr and x+ = x + α(-r). 

 Or,  x+ = x + (rTr / rTAr) r. 

 

Steepest Descent Algorithm. 

  xo = initial guess 

for m = 0, maxm 

   rm = d - Axm 

   α = rm Trm  / rm TArm  

   xm+1= xm + α rm 

   test for convergence. 

 

The next residual rm+1 may be computed using the previous residual: 

     rm+1 = d - A xm+1 = d - A(xm + αrm) = d - Axm - αArm = rm - αArm . 

Thus, each iteration of the steepest descent algorithm requires one matrix-vector product, 

two dotproducts and one vector update. 

 

 Consider the partial differential equation - uxx - uyy = f(x,y) where u must be equal 

to zero on the boundary of the unit square.  In the Matlab code observe the use of array 

operations.  The vectors are represented as 2D arrays, and the sparse matrix A is not 

explicitly stored.  The product Ar is stored in the 2D array q.  Here the partial differential 

equation has right side equal to 200 + 200sin(πx)sin(πy), and the solution is required to 

be zero on the boundary of  (0,1)x(0,1).  The steepest descent method appears to be 



 3 

converging, but after 200 iterations the norm of the residual is still only about 10-1.  In the 

next section the conjugate gradient method will be described.  One calculation is included 

here and shows that after only 26 iterations of the conjugate gradient method, the norm of 

the residual is about 10-4.  It is interesting to note if the right side is 200sin(πx)sin(πy), 

then the steepest descent method will converge in one iteration….Why? 

 

Matlab Steepest Descent Code (st.m) 

clear; 
n = 20; 
h = 1./n; 
u(1:n+1,1:n+1)= 0.0; 
r(1:n+1,1:n+1)= 0.0; 
r(2:n,2:n)= 1000.*h*h; 
for j= 2:n 
   for i = 2:n 
      r(i,j)= h*h*200*(1+sin(pi*(i-1)*h)*sin(pi*(j-1)*h)); 
   end 
end 
q(1:n+1,1:n+1)= 0.0; 
err = 1.0; 
m = 0; 
rho = 0.0; 
while ((err>.0001)*(m<200)) 
   m = m+1; 
   oldrho = rho; 
   rho = sum(sum(r(2:n,2:n).^2)); 
   for j= 2:n 
      for i = 2:n 
         q(i,j)=4.*r(i,j)-r(i-1,j)-r(i,j-1)-r(i+1,j)-r(i,j+1); 
      end 
   end 
   alpha = rho/sum(sum(r.*q)); 
   u = u + alpha*r; 
   r = r - alpha*q; 
   err = max(max(abs(r(2:n,2:n)))); 
   reserr(m) = err; 
end 
m 
semilogy(reserr) 
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Log(norm(r)) versus m for the Steepest Descent Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Log(norm(r)) versus m for the Conjugate Gradient Method 
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Steepest Descent with Multiple Directions. 
 

The steepest descent method computes the smallest J(x) for each direction: 

1 0
0 0x x rα= +  

2 1 0
1 1 0 0 1 1x x r x r rα α α= + = + + . 

In order to obtain smaller values of J(x), we may minimize over larger dimensional sets 

of functions given by multiple directions: 

1 0
0 0x x c r= +  

2 1
0 0 1 1x x c r c r= + +  (use two directions). 

Next, c0 and c1 now will be found so that 

0 1
0 1

,
min ( , )
c c

f c c  where 1
0 1 0 0 1 1( , ) ( ).f c c J x c r c r≡ + +  

In general, we consider m+1 directions 

 1
0 0

m m
m mx x c r c r+ = + + +L  

  0 0 0( , , ) ( )m
m m mf c c J x c r c r≡ + + +L L  

Find c = (c0,…,cm) so that min ( ).
c

f c  Use the vector notation so that 

  [ ]
0 ( 1 ) ( 1)

1 0

n m m m

m m m m

m

c

x x r r x R c

c

× + + ×

+

 
 = + = + 
  

L M . 

Find c so that ( ) ( ) is a minimum.mf c J x Rc= +  
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Proposition 5.  If A is SPD, and R has full column rank, then c such that f(c) is 

minimum is given by ( ) .T T
mR AR c R r=  

 

Proof.  Again use the Algebraic Lemma to obtain 

  1

1
( ) ( ) ( ) ( ) ( )

2
T T

m m mJ x J x Rc A Rc Rc r+ = + − . 

             Define  

  

1ˆ( ) ( ) ( ) ( )
2
1 ˆˆ ,
2

ˆˆwhere is SPD and .

T T
m

T T

T T
m

J c Rc A Rc Rc r

c Ac R d

A R AR d R r

≡ −

= −

≡ ≡

 

ˆ TA R AR≡  is SPD because A is SPD and R has full column rank.  Use the 

equivalence, given by Proposition 1, of the minimum of ˆ( )J c  and the solution of  

ˆˆ .Ac d=  

 

One difficulty with this is that as m gets large more computations must be done to 

find RTAR = [ri TA rj] and then to solve (RTAR) c = RTrm.  If the residuals were 

orthogonal with respect to the inner product given by A, then the matrix RTAR would be 

diagonal.  The conjugate gradient method uses a version of the Gram-Schmidt process to 

ensure this is the case. 



6.3 Conjugate Gradient Method 
 
 
 In order to simplify the solution of (RTAR)c = RTrm, we will apply the Gram- 
 
Schmidt  process to the residuals and use the inner product given by the SPD matrix, A. 
 
This will convert the matrix (RTAR) into a diagonal matrix. 
 
 
Two directions m = 1: 

 

 
 
 
 
 
 

0 0

1 1 0

1 0 A

T
1 0 0

T T
1 0 0 0

T
T1 0

0 0T
0 0

p   r

p   r  p

Choose   so that (p ,p )   0

(r   p ) Ap   0

r Ap   p Ap   0

-r Ap
So,   , where the p Ap 0 because A is SPD.

p Ap

β
β

β

β

β

≡

≡ +
=

+ =

+ =

= >

[ ]

2 1
0 0 1 1

1
0 0 1 1 0

1
0 0 1 1

0 1

1
0 0 1 1

T T
1

0 1

x   x   c p   c p  

 x   c p  c (r p )

ˆ ˆ       x   c r   c r

Choose c  and c  so that

J(x  +c p c p ) is a minimum. 

This true if and only if 

P APc P r  where

            P  p  p  and 

      

β

= + +

= + + +

= + +

+

=

=

0

1

T T T
0 0 0 1 0 0 1

T T T
11 0 1 1 1 1

c
      c .

c

Or,

p Ap p Ap c p r
   .

cp Ap p Ap p r

 
=  

 

    
=    

       
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Proposition 6.  Let A be SPD. 
 
If (a). p0 = ro, 

 

 (b). p1 = r1 + β0 p0 where β0 = -r1
TAp0/p0

TAp0, 
 
 (c). x1 = x0 + α0 r0 where α0 = r0

Tr0/r0
TAr0, 

 
then 
 

1. p1
TAp0 = 0, 

 
2. p0

Tr1 = 0, and hence, c0 = 0, 
 

3. p1
Tr1 = r1

Tr1, and hence,  c1 = r1
Tr1/p1

TAp1 =  α1 and 
 

4. β0 = r1
Tr1/ r0

Tr0.  
 

Overall, p1 = r1 +  β0 p0  and x2 = x1 + α1 p1. 
 
Proof of 1. By definition of β . 
 
 
Proof of 2. 

 
Proof of 3. 

  
1 1 1 0 0 1

1 1 0 0 1

1 1 0

( )

0.

T T

T T

T

p r r p r

r r p r

r r

β

β

β

= +

= +

= +

 

 
 
 
 

1 1 1

0 0 0

0 0 0

0 0 0

T T
0 1 0 0 0 0

T T
0 0 0 0 0

r   r(x )  d - Ax  

 d - A(x p ) 

 (d - Ax ) - Ap

r  - Ap

p r   p (r - Ap ) 

 r r - p Ap  

 0.

α
α

α

α

α

= =
= +

=
=

=

=

=
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Proof  of 4. 

  

1 1 0 0 0 0

0 0
0 0 0 0 0 02

0 0

1 0 0 0 0

0 0
0 0 0 0

0 0

1 0 1 1
0

0 0 0 0

( ) ( )

( ) ( )
( )

( )

( ) ( )

Thus, .

T T

T
T T T

T

T T

T
T T

T

T T

T T

r r r Ar r Ar

r r
r r r r Ar Ar

r Ar

r Ar r Ar Ar

r r
r Ar Ar Ar

r Ar

r Ar r r

r Ar r r

α α

α

β

= − −

= − +

= −

= −

= − =

 

 
 
 
Use three directions   m=2: 

 

 
 

3 2
0 0 1 1 3 3

0 0

1 1 0 0

2 2 1 1

1 2 1 A

T
2 1 1 1

T
2 1

1 T
1 1

x x c p c p c p

p r

p r p

p r p

Choose   so that (p , p ) 0

(r p ) Ap 0

-r Ap
.

p Ap

β
β
β

β

β

= + + +
≡
≡ +

≡ +
=

+ =

=

2 T T
0 0 1 1 2 2 2

0 0 0 2 0 20

1 1 1 1 2

22 0 2 2 2 2

0 2 1 2 0 2

min J(x c p c p c p ) if and only if P APc P r .

Or,

0

0 0       .

0

Fortunately, we can show

0 and 

T T T

T T

T TT

T T T

p Ap p Ap p rc

p Ap c p r

cp Ap p Ap p r

p r p r p Ap p

+ + + =

         =               

= = = 2 0

3 2
0 1 2 2

2 2 2 2
2 2

2 2 2 2

0so that

0 0  where

.

T

T T

T T

Ap

x x p p c p

p r r r
c

p Ap p Ap
α

=

= + + +

= = =
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Proposition 7.   Let A be SPD and m = 2. 

 
     
 
 
Proof of 1. 
 

 

1
0 1

2 2 1 1

2 1
1

1 1

2 1
1 1

1 1
1

1 1

0 2

1 2

If   (a).   Let p , x , p  be defined as in Proposition 6.

 (b).   

-

           

     (c).    

            ,

then

    1.     0

    2.     0

    3. 

T

T

T

T

T

T

p r p

r Ap

p Ap

x x p

r r

p Ap

p r

p r

β

β

α

α

= +

=

= +

=

=

=

1 2

0 2

2 2
2 2 2 2 2 2

2 2

2 2
1

1 1

3 2
2 2 1 1 2 2

    0

    4.     0

    5.      ,and hence, 

    6.    .

Overall,  and .

T

T

T
T T

T

T

T

p Ap

p Ap

r r
p r r r c

p Ap

r r

r r

p r p x x p

α

β

β α

=

=

= = =

=

= + = +

2 1 1 1

0 2 0 1 1 1

0 1 1 0 1 0 1

0 0 0 0

-

( - )

           -     , 0

           ( - )

           0 .

          

T T

T T T

T

r r c Ap

p r r r c Ap

r r c r Ap r Ap

r r c Ar

=

=

= =

=
=
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Conjugate Gradient Method. 
 

 
 
Preconditioned Conjugate Gradient Algorithm  (M = I is Conjugate Gradient). 
 

 

0

0 0 0 0

1

1

1 1

1 1

1 1

choose 

ˆ ˆsolve  and 

0,max

ˆ
( )

ˆsolve ( )

ˆ

ˆ

ˆ . (

T
m m

m T
m m

m m
m m

m m m m

m m

T

m m
m T

m m

m m m m

x

Mr r p r

for m m

r r
steepest descent

p Ap

x x p

r r Ap

test for convergence

Mr r preconditioning

r r

r r

p r p conjugatedi

α

α
α

β

β

+

+

+ +

+ +

+ +

= =
=

=

= +

= −

=

=

= + )rection

 

1

1 1 1

1

0 0

      (      .)

     (    " "  ( , ) 0.)

min ( ) if and only if  

0 0 0

0 0 0

0 0 0

0 0 0

m m
m

m m m m m A

m T T
m

T

T
m m

x x p represents the steepest descent formula

p r p repesents the conjugate direction p p

J x P APc P r

p Ap

p Ap

α α

β β

+

+ + +

+

= +

= + =

=







O
O

0
0

      
0
T

m m m

c

c p r

   
   
    =    

    
       

MM
M



6.4 Preconditioned Conjugate Gradient 
 

Error for the CG is a function of the condition number of A, 2

max
( ) .

min
A

λ
κ

λ
=  

 
The fastest convergence of the CG method occurs when 2( ) 1Aκ ≈ .  Preconditioning can  
 
Be viewed as finding an equivalent ˆˆ ˆAX d= such that  
 

2 2
ˆ( ) 1 ( ) 1K A K A− < −  

 
There are three equivalent descriptions of the CG scheme: 
 

1. 1( ) min ( ...... )m m
C o o m mJ x J x c r c r+ = + + +  

 
where ri are residual directions, 

 
2. 1( ) min ( ...... )m m

C o o m mJ x J x c p c p+ = + + +  

 
where pi are conjugate directions, and 

 
3. 1

1( ) min ( ...... )m o m
C o o o m oJ x J x c r c Ar c A r+ = + + +  

 
where Air0 are Krylov directions. 

 
 
Proposition 8.   If A is SPD, then 1,2 and 3 are equivalent. 
 
 
Proof. 

1 2↔ , see formal proof on Stoer and Bulrich. 
 
2 3↔ , see Kelley. 
 

 
Connection among 1,2,3: 
 
Let pi be the conjugate directions as defined in the conjugate gradient algorithm. 
 
 o op r≡  



 2

 
1 o

o ox x pα= +  

 
1

1 1

2 1
1 1

o o o

o o

r r Ap

p r p

x x p

α
β

α

= −
= +

= +

 

  

1
1 1

1
1 1

1

1

( )

( ) ,

( )

, .

o o

o o

o
o o o o o o o

o
o o o

x r p

x r r residual directions

x r r Ap r

x c r c Ar Krylov directions

α β

α β

α α α β

= + +

= + +

= + + − +

= + +

 

 
 
Proposition 9.  If A is SPD, then 

1

21

2

1
2

1

m

m o

A A
x x x x

κ

κ

+

+
 −

− ≤ −  + 
 

 
where Ax = d, 2 2( )Aκ κ= and 2 .T

A
x x Ax=  

 
 
“Outline of proof" 
 

Use the Algebraic Lemma 
 

  
1 1 1( ) ( ) 1/2( ) ( )m m T mJ x J x x x A x x+ + +− = − −  

    211/2 .m

A
x x+= −  

 
 1 ( .......... )m o m

o o m ox x x x c r c A r+− = − + +  

   1

( .......... )

( ......... )

o m
o o m o

o m
o m o

x x c r c A r

x x c I c A c A r

= − − +

= − − + +  

 o
or d Ax= −  

     
( )

o

o

Ax Ax

A x x

= −

= −
 

 

 
1

1( ......... ) ( )m o m o
o m ox x x x c I c A c A r A x x+− = − − + + −  
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              1( ( ......... ) )( )m o
o mI c I c A c A A x x= − + + −  

 
 
So, by the Algebraic Lemma 
 

2 21 12( ( ) ( )) ( )( )m m o
mA A

J x J x x x q A x x+ +− = − ≤ −   where 

 
   1( ) 1 ( ...... ).m

m o mq z c z c z += − + +  

 
To obtain an error estimate choose a "good" polynomial qm(z). 
 
 
Form of Preconditioner. 
 

 

1

1 1

 is SPD

( )

( )( )
ˆLet  

ˆ       
ˆ       ,  

T

T T

T T T T

T T

T

T

A M N

M

M S S

Ax d

M Ax M d

S SAx S Sd

S SAS S x S Sd

SAS S x Sd

A SAS

x S x

d Sd

−

− −

−

−

−

= −

=
=

=

=

=

=

=

=

=

 

 
 

Apply CG to ˆˆ ˆAx d=  and use the definition 1 TM S S− =  to get the PCG . 

 

Examples. 

   1. M = diagonal part of A 

                             or 

                       = block diagonal part of A 

               2. M = incomplete Cholesky factorization 

               3. M = incomplete domain decomposition 
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               4. M for symmetric SOR splitting as follows: 

               

1 / 2

1 1 / 2

1

1 1 1

1 1

1.

( )             Forward SOR

( )           Backward SOR

                     ( ) ( )

( ) [ ( ) ( )]

          ( ) ( )

T

m T m

T m m

T m

m T T m

T T

Let w

A D L L

D L x d L x

D L x d Lx

d L D L d L x

x D L d L D L d L x

D L d D L

+

+ +

−

+ − −

− −

=

= − −

− = +

− = +

= + − +

= − + − +

= − + − 1 1 1

1 1

1 1 1 1

1 1

1 1

1

1

( ) ( ) ( )

          

( ) ( ) ( )

        ( ) [( ) ]( )

        ( ) ( )

ˆ     

ˆ             ( ) ( ) .

1

1
(

T T m

m

T T

T

T

T

L D L d D L L D L L x

M d M Nx

M D L D L L D L

D L D L L D L

D L D D L

Solve M r r

D L D D L r r

For

Mω

ω

ω

− − −

− −

− − − −

− −

− −

−

−

− + − −

= +

= − + − −

= − − + −

= − −

=

− − =

≠

= 1 12 1
( )) ( ) ( ( )) .TD L D D L

ωω ω
ω ω

− −−
− −

 
       
    
Matlab Preconditioned Conjugate Gradient with SSOR (cgssor.m) 
 
 
clear; 
% 
%  Solves  -uxx -uyy = 200+200sin(pi x)sin(pi y) with zero BCs 
%  Uses PCG with SSOR preconditioner 
%  Uses 2D arrays for the column vectors 
%  Does not explicity store the matrix 
% 
w = 1.5; 
n = 20; 
h = 1./n; 
u(1:n+1,1:n+1)= 0.0; 
r(1:n+1,1:n+1)= 0.0; 
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rhat(1:n+1,1:n+1) = 0.0; 
%  Define right side of PDE 
for j= 2:n 
   for i = 2:n 
      r(i,j)= h*h*(200+200*sin(pi*(i-1)*h)*sin(pi*(j-1)*h)); 
   end 
end 
 
 
 
 
p(1:n+1,1:n+1)= 0.0; 
q(1:n+1,1:n+1)= 0.0; 
err = 1.0; 
m = 0; 
rho = 0.0; 
%  Begin PCG iterations 
while ((err>.0001)*(m<200)) 
   m = m+1; 
   oldrho = rho; 
%  Execute SSOR preconditioner 
   for j= 2:n 
      for i = 2:n 
         rhat(i,j)=w*(r(i,j)+rhat(i-1,j)+rhat(i,j-1))/4.; 
      end 
   end 
   rhat(2:n,2:n) = ((2.-w)/w)*(4.)*rhat(2:n,2:n); 
   for j= n:-1:2 
      for i = n:-1:2 
         rhat(i,j)=w*(rhat(i,j)+rhat(i+1,j)+rhat(i,j+1))/4.; 
      end 
   end 
%  Find conjugate direction 
   rho = sum(sum(r(2:n,2:n).*rhat(2:n,2:n))); 
   if (m==1)  
      p = rhat; 
   else 
      p = rhat + (rho/oldrho)*p; 
   end 
%  
%  Use the following line for steepest descent method 
%   p=r; 
% 
%  Executes the matrix product q = Ap without storage of A 
   for j= 2:n 
      for i = 2:n 
         q(i,j)=4.*p(i,j)-p(i-1,j)-p(i,j-1)-p(i+1,j)-p(i,j+1); 
      end 
   end 
%  Executes the steepest descent segment  
   alpha = rho/sum(sum(p.*q)); 
   u = u + alpha*p; 
   r = r - alpha*q; 
%  Test for convergence via the infinity norm of the residual 
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   err = max(max(abs(r(2:n,2:n)))); 
   reserr(m) = err; 
end 
m 
semilogy(reserr) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Log(norm(r)) versus m for PCG with SSOR 

1 2 3 4 5 6 7 8 9 1 0 1 1
1 0

-5

1 0
-4

1 0
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1 0
-2

1 0
-1

1 0
0

1 0
1



6.5 Generalized Minimum Residual 
 
 If A is not SPD, then the PCG will not be applicable because it is based on the 

equivalent minimization of J(x).  Two alternatives, amoung others, are 

 1. replace Ax = d with the normal equations ATAx = ATd, 

 2. replace minimization of J(x) with the minimization of  

   r(x)Tr(x) where r(x) = d - Ax. 

The normal equation approach can be computationally expensive or ill-conditioned.  In order to 

make the minimization of the residual less computationally less expensive, the minimization is 

done over an m dimensional subspace. 

 

Definition. Km = {x | x = 
1

0

m
i

i oA rα
−

∑ } is called a Krylov space.  The Air0 are called 

Krylov vectors .  A slight abuse of notation is to form a matrix, also written as Km, as 

Km = [r0  Ar0  … Am-1r0 ]. 

 

Definition. The generalized residual method is given by 

   xm = x0 + 
1

0

m
i

i oA rα
−

∑  where  

   r(xm)Tr(xm) = min r(x)Tr(x) with x ∈ x0 + Km. 

  If after m steps the method is restarted with x0 replaced by xm, then it is  

  called the GMRES(m) method. 
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 The main benefit of using the Krylov subspaces is that  

  AKm is contained in Km+1. 

This is very useful in the solution of the minimization, which is related to finding the least squares 

solution of 

  

1
0

0
0

1
1 0

0 0
0

0

0 0 0

1

0

( )

[ ]

.

m
i

i

m
i

i

m

m

m

A x A r d

A r d Ax r

Ar A r r

AK r

α

α

α

α

α

−

−
+

−

+ =

= − =

 
  = 
  

=

∑

∑

L M

 

 In order to efficiently solve this least squares problem, we will construct an orthonormal 

basis, one column vector per iteration, of Km.  Let Vm = [v1 ...  vm] be such a basis.  Since 

AKm is contained in Km+1, each column in AVm should be a linear combination of columns in 

Vm+1. 

  Av1 = v1 h11 + v2 h21  where, by the orthonormal basis property, 

   v1
TAv1 = h11 and v2

TAv1 = h21. 

  Av2 = v1 h12 + v2 h22 + v3 h32   where, by the orthonormal basis property, 

   v1
TAv2 = h12, v2

TAv2 = h22 and   v3
TAv2 = h32. 
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The matrix form of this is 

 
[ ] [ ]

11 12

21 22
1 2 1 2 3

32

1

0

0 0

.m m

h h

h h
Av Av v v v

h

AV V H+

 
 
 =
 
 
 

=

L
LL L L
L

 

A is nxn, Vm is nxm, and H is and (m+1)xm Hessenberg matrix.  The QR factorization of 

Hessenberg matrices are easy to compute via the Givens transformation.  

 The first column in Vm will be the normalized r0 

  r0 = b v1  where v1
Tv1 = 1 so that b = (r0

Tr0)1/2. 

Hence, r0 is the first column of Vm+1 times b, that is, 

  r0 = Vm+1e1 b where e1 = [1 0.....]T. 

Then the least squares problem can be written as 

  AKm α = r0, or 

  AVm α = Vm+1e1 b. 

 

Proposition 10. The least squares solution of AKm α = r0 is given by the least squares 

solution of Hα = e1 b where b = (ro
Tro)1/2 and AVm = Vm+1H. 

 

Proof.   AVm α = Vm+1e1 b 

   Vm+1H α = 
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The least squares solution means R(α)TR(α) is a minimum where 

  R(α) = Vm+1e1 b - Vm+1H α . 

 

Since Vm+1 is orthonormal,  

  R(α)T R(α) = (Vm+1e1 b - Vm+1H α)T(Vm+1e1 b - Vm+1H α) 

    = (e1 b - Hα)T Vm+1
TVm+1 (e1 b - Hα) 

    = (e1 b - Hα)T (e1 b - Hα). 

So,  this is the least squares solution of Hα = e1 b. 

 

 In order to find the least squares solution, we must solve the normal equations via the 

QR factors of H.  Let H = QR so that the normal equation becomes 

   HTHα = HT e1 b  

   R α =  QT e1 b. 

The Givens transformation can be used to construct the QR factorization of H.  Moreover, the 

basis and Hessenberg matrix can be constructed one column per iteration.  The following 

implementation solve the Poisson problem where the matrix product step is a sparse matrix 

product, and the unknowns are listed in a 2D space grid array. 

 

Matlab Code GMRES2d.m 

% gmres method for Poisson equation 
% see C. T. Kelley's text 
% see Matlab file gmres.m 
clear;                                    
%  Input data.  
nx = 20; 
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ny = nx; 
errtol=.0001; 
kmax = 30; 
%  Initial guess.  
x0(1:nx+1,1:ny+1) = 0.0;                  
x = x0; 
h = zeros(kmax); 
v = zeros(nx+1,ny+1,kmax); 
c = zeros(kmax+1,1); 
s = zeros(kmax+1,1); 
b(1:nx+1,1:ny+1) = 200./(nx*nx); 
r = b; 
rho = sum(sum(r(2:nx,2:ny).*r(2:nx,2:ny)))^.5; 
g = rho*eye(kmax+1,1); 
errtol = errtol*rho; 
v(2:nx,2:ny,1) = r(2:nx,2:ny)/rho; 
k = 0; 
%  Begin gmres loop. 
while((rho > errtol) & (k < kmax))         
    k = k+1; 
%  Matrix vector product. 
    v(2:nx,2:ny,k+1) = -v(1:nx-1,2:ny,k)-v(3:nx+1,2:ny,k)- 
   v(2:nx,1:ny-1,k)-v(2:nx,3:ny+1,k)+4.*v(2:nx,2:ny,k); 

%  Begin modified GS. May need to reorthogonalize.  
    for j=1:k                               
        h(j,k) = sum(sum(v(2:nx,2:ny,j).*v(2:nx,2:ny,k+1))); 
        v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)-h(j,k)*v(2:nx,2:ny,j); 
    end 
    h(k+1,k) = sum(sum(v(2:nx,2:ny,k+1).*v(2:nx,2:ny,k+1)))^.5; 
    if(h(k+1,k) ~= 0) 
         v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)/h(k+1,k); 
    end 
%  Apply old Givens rotations to h(1:k,k). 
    if k>1                                 
       for i=1:k-1 
         hik    = c(i)*h(i,k)-s(i)*h(i+1,k); 
         hipk   = s(i)*h(i,k)+c(i)*h(i+1,k); 
         h(i,k) = hik; 
         h(i+1,k) = hipk; 
       end 
    end 
    nu = norm(h(k:k+1,k)); 
%  May need better Givens implementation.  
%  Define and Apply new Givens rotations to h(k:k+1,k).     
    if nu~=0                               
        c(k) = h(k,k)/nu; 
        s(k) = -h(k+1,k)/nu; 
        h(k,k) = c(k)*h(k,k)-s(k)*h(k+1,k); 
        h(k+1,k) = 0; 
        gk   = c(k)*g(k) -s(k)*g(k+1); 
        gkp  = s(k)*g(k) +c(k)*g(k+1); 
        g(k) = gk; 
        g(k+1) = gkp; 
    end 
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    rho=abs(g(k+1)); 
    mag(k) = rho; 
 end  
%  End of gmres loop.   
%  h(1:k,1:k) is upper triangular matrix in QR. 
  y=h(1:k,1:k)\g(1:k);  
%  Form linear combination. 
for i=1:k                                  
   x(2:nx,2:ny) = x(2:nx,2:ny) + v(2:nx,2:ny,i)*y(i); 
end 
semilogy(mag) 
%  mesh(x) 
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Constrained Optimization using Matlab's fmincon

A. Basic Calls (without any special options) 
Example1              Example 2 
B. Calls with Gradients Supplied 
Matlab's HELP DESCRIPTION

For constrained minimization of an objective function f(x) (for maximization use -f), Matlab provides the
command fmincon. The objective function must be coded in a function file in the same manner as for
fminunc. In these notes this file will be called objfun and saved as objfun.m  in the working directory.

A: Basic calls   top

Without any extra options, fmincon  is called as follows:

- with linear inequality constraints Ax£b only (as in linprog): 
[x,fval]=fmincon('objfun',x0,A,b)

- with linear inequality constraints and linear equality constraints Aeq·x=beq only: 
[x,fval]=fmincon('objfun',x0,A,b,Aeq,beq)

- with linear inequality and equality constraints, and in addition a lower bound of the form x³lb only: 
[x,fval]=fmincon('objfun',x0,A,b,Aeq,beq,lb) 
If only a subset of the variables has a lower bound, the components of lb corresponding to variables
without lower bound are -Inf. For example, if the variables are (x,y), and x³1 but y has no lower bound,
then lb=[1;-Inf].

- with linear inequality and equality constraints and lower as well as an upper bound of the form x
£ub only: 
[x,fval]=fmincon('objfun',x0,A,b,Aeq,beq,lb,ub) 
If only a subset of the variables has an upper bound, the components of ub corresponding to variables
without upper bound are Inf. For example, if the variables are (x,y) and x£1 but y has no lower bound,
then lb=[1;Inf].

- with linear inequality and equality constraints,  lower and upper bounds, and nonlinear inequality
and equality constraints: 
[x,fval]=fmincon('objfun',x0,A,b,Aeq,beq,lb,ub,'constraint') 
The last input argument in this call  is the name of a function file (denoted  constraint in these notes and
saved as constraint.m  in the working directory), in which the nonlinear constraints are coded.

Constraint function file: 
constraint.m is a function file (any name can be chosen) in which both the inequality functions  c(x)
and the equality constraints ceq(x) are coded and provided in the form of column vectors. The function
call

[c,ceq]=constraint(x)

must retrieve c(x) and ceq(x) for given input vector x. Examples of constraint function files are given in
Examples 1 and 2 below. If only inequality constraints are given, define ceq=[]. Likewise, if only
equality constraints are given, define c=[].

Interpretation: 

http://kstio.com/nm/optimization/constrained.html#A:%20Basic
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The retrieved ceq(x) is interpreted by fmincon as equality constraint ceq(x)=0. The inequalities associated
with c(x) are interpreted as c(x)£0. Thus, if a constraint of the form c(x)³0 is given, rewrite this as -c(x)£0
and code -c(x) in the constraint function file.

Placeholders: 
As shown above, the constraints have to passed to fmincon in the following order: 
1. Linear inequality constraints 
2. Linear equality constraints 
3. Lower bounds 
4. Upper bounds 
5. Nonlinear constraints 
If a certain constraint is required, all other constraints appearing before it have to be inputted as well, even
if they are not required in the problem. If this is the case, their input argument is replaced by the
placeholder [] (empty input).

Examples: 
- If lb and (A,b) are given, but there are no other constraints, the syntax is: 
[x,fval]=fmincon('objfun',x0,A,b,[],[],lb)

- If ub and (Aeq,beq) are the only constraints: 
[x,fval]=fmincon('objfun',x0,[],[],Aeq,beq,[],ub)

- If only nonlinear constraints are given: 
[x,fval]=fmincon('objfun',x0,[],[],[],[],[],[],'constraint') 
and function file constraint.m must be provided. 
 

Example 1:    top

Find the minimum of

f(x,y)=x4-x2+y2-2x+y
subject to

 linear inequalities linear equalities lower bounds upper bounds nonlinear constraints
(a) -- -- x³0 y£0 --
(b) -- x+y=0 -- x£1,  y£10 --
(c) x+y£0 -- -- -- x2+y2£1
(d) -- -- -- -- x2+y2=1
(e) -- -- -- --  x2+y2=1,  x2-y2³1
(f) -- -- -- --  x2+y2£1,  x2-y2³1 

Solution: The objective function is coded as for unconstrained minimization:

function f=objfun(x)

f=x(1)^4-x(1)^2+x(2)^2-2*x(1)+x(2);

For (a), (b) we don't need a constraint function file. The calls are (assuming x0=[value1;value2] is
already defined): 
(a):   [x,fval]=fmincon('objfun',x0,[],[],[],[],[0;-Inf],[Inf;0]) 
(b):   [x,fval]=fmincon('objfun',x0,[],[],[1,1],0,[],[1;10])
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For (c)-(f)  we need a constraint function file. In each case the first line of the file constraint.m  is:

function [c,ceq]=constraint(x)

followed by an empty line. The commands below the 2nd line are: 
 

(c) (d) (e) (f)

c=x(1)^2+x(2)^2-1; 
ceq=[];

c=[]; 
ceq=x(1)^2+x(2)^2-1;

c=1-x(1)^2+x(2)^2; 
ceq=x(1)^2+x(2)^2-1;

c1=x(1)^2+x(2)^2-1; 
c2=1-x(1)^2+x(2)^2; 
c=[c1;c2];ceq=[];

For example, for (f) the full constraint function file is:

function [c,ceq]=constraint(x)

c1=x(1)^2+x(2)^2-1; 
c2=1-x(1)^2+x(2)^2; 
c=[c1;c2];ceq=[];

Function calls for (c)-(f): 
(c):       [x,fval]=fmincon('objfun',x0,[1,1],0,[],[],[],[],'constraint') 
(d)-(f):  [x,fval]=fmincon('objfun',x0,[],[],[],[],[],[],'constraint')

Approximate solutions found by fmincon: 
 

x0 x y fval

(a) [1;-1] 1.00000006131380 -0.50000014164875 -2.24999999999996

(b) [1;-1] 0.90852417219345 -0.90852417219345 -2.04426066047301

(c) [0;0] 0.70710678118746 -0.70710678118746 -1.87132034356109

(d) [1;0] 0.92894844437517 -0.37020912075712 -2.20932198927909

(e) [.5;.1] 1.00000000003278 -0.00000810106872 -2.00000810100310

(f) [.1;.1] 1.00000000000009 0.00000001792512 -1.99999998207488

Example 2:    top

Minimize and maximize the objective function

f(x,y,z)=x3+y3+z3

subject to
x³0,      z£0,     x2+y2+z2=1,     y2³2z2.

Objective function file: 
For Minimization: 
function f=objfun(x)

f=x(1)^3+x(2)^3+x(3)^3;

For Maximization: 
function f=objfun(x)

f=x(1)^3+x(2)^3+x(3)^3;f=-f;
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Constraint function file: 
function [c,ceq]=constraint(x)

c=2*x(3)^2-x(2)^2; 
ceq=x(1)^2+x(2)^2+x(3)^2-1;

Function calls (in command window) and answers: 
Minimization: 
>> x0=[0;1;2]; 
>> [x,fval]=fmincon('objfun',x0,[],[],[],[],[0;-Inf;-Inf],[Inf;Inf;0],'constraint')

Warning: Large-scale (trust region) method does not currently solve this type of
problem, 
switching to medium-scale (line search). 
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213 
Optimization terminated successfully: 
 Magnitude of directional derivative in search direction 
  less than 2*options.TolFun and maximum constraint violation 
  is less than options.TolCon 
Active Constraints: 
     1 
     3 
x = 
   0.92898366078939 
  -0.37012154351899 
                  0 
fval = 
  -2.20932218190572

Answer for Maximization (same call, only objective function file was changed): 
Warning: Large-scale (trust region) method does not currently solve this type of
problem, 
switching to medium-scale (line search). 
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213 
Optimization terminated successfully: 
 Search direction less than 2*options.TolX and 
  maximum constraint violation is less than options.TolCon 
Active Constraints: 
     1 
x = 
     0 
     1 
     0 
fval = 
    -1 
 

B: Call of fmincon with gradient information provided    top

As for fminunc the performance of fmincon can be improved if gradient information is supplied. This
information can be provided for the objective function, the nonlinear constraint functions, or both. Let's
consider Example 1(f) again. The objective function file is extended as:

function [f,gradf]=objfun(x)

f=x(1)^4-x(1)^2+x(2)^2-2*x(1)+x(2); 
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gradf=[4*x(1)^3-2*x(1)-2;2*x(2)+1];

For providing the gradients of the nonlinear constraints, the constraint function file is extended as:

function [c,ceq,gradc,gradceq]=constraint(x)

c1=x(1)^2+x(2)^2-1; 
c2=1-x(1)^2+x(2)^2; 
c=[c1;c2];ceq=[]; 
gradc=[2*x(1),-2*x(1);2*x(2),2*x(2)]; 
gradceq=[];

Note that the the first column of gradc is the gradient-vector of the first constraint, and the second column
of gradc is the gradient vector of the second constraint.

As in the unconstrained case we have to set the gradient option. We want to supply  the gradient of the
objective function as well as the nonlinear constraints. The follwoing command sets this option:

>> options = optimset('GradObj','on','GradConstr','on');

In the function call these options are passed to fmincon as input argument after the name of the constraint
file:

>> x0=[.1;.1];[x,fval]=fmincon('objfun',x0,[],[],[],[],[],[],'constraint',options)

Warning: Large-scale (trust region) method does not currently solve this type of
problem, 
switching to medium-scale (line search). 
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213 
Optimization terminated successfully: 
 Search direction less than 2*options.TolX and 
  maximum constraint violation is less than options.TolCon 
Active Constraints: 
     1 
     2 
x = 
   1.00000000000000 
  -0.00000171875724 
fval = 
  -2.00000171875428 
  
 

Matlab's HELP DESCRIPTION   top

FMINCON Finds the constrained minimum of a function of several variables. 
    FMINCON solves problems of the form: 
        min F(X)  subject to:  A*X  <= B, Aeq*X  = Beq (linear constraints) 
         X                       C(X) <= 0, Ceq(X) = 0   (nonlinear constraints) 
                                 LB <= X <= UB

    X=FMINCON(FUN,X0,A,B) starts at X0 and finds a minimum X to the function 
    FUN, subject to the linear inequalities A*X <= B. FUN accepts input X and 
    returns a scalar function value F evaluated at X. X0 may be a scalar, 
    vector, or matrix.
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    X=FMINCON(FUN,X0,A,B,Aeq,Beq) minimizes FUN subject to the linear equalities 
    Aeq*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no inequalities exist.)

    X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper 
    bounds on the design variables, X, so that the solution is in 
    the range LB <= X <= UB. Use empty matrices for LB and UB 
    if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below; 
    set UB(i) = Inf if X(i) is unbounded above.

    X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON) subjects the minimization to the 
    constraints defined in NONLCON. The function NONLCON accepts X and returns 
    the vectors C and Ceq, representing the nonlinear inequalities and equalities 
    respectively. FMINCON minimizes FUN such that C(X)<=0 and Ceq(X)=0. 
    (Set LB=[] and/or UB=[] if no bounds exist.)

    X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) minimizes with the 
    default optimization parameters replaced by values in the structure OPTIONS, 
    an argument created with the OPTIMSET function.  See OPTIMSET for details.  Used 
    options are Display, TolX, TolFun, TolCon, DerivativeCheck, Diagnostics, GradObj, 
    GradConstr, Hessian, MaxFunEvals, MaxIter, DiffMinChange and DiffMaxChange, 
    LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG, TypicalX, Hessian, HessMult, 
    HessPattern. Use the GradObj option to specify that FUN also returns a second 
    output argument G that is the partial derivatives of the function df/dX, at the 
    point X. Use the Hessian option to specify that FUN also returns a third output 
    argument H that is the 2nd partial derivatives of the function (the Hessian) at the
    point X.  The Hessian is only used by the large-scale method, not the 
    line-search method. Use the GradConstr option to specify that NONLCON also 
    returns third and fourth output arguments GC and GCeq, where GC is the partial 
    derivatives of the constraint vector of inequalities C, and GCeq is the partial 
    derivatives of the constraint vector of equalities Ceq. Use OPTIONS = [] as a 
    place holder if no options are set.

    X=FMINCON(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS,P1,P2,...) passes the 
    problem-dependent parameters P1,P2,... directly to the functions FUN 
    and NONLCON: feval(FUN,X,P1,P2,...) and feval(NONLCON,X,P1,P2,...).  Pass 
    empty matrices for A, B, Aeq, Beq, OPTIONS, LB, UB, and NONLCON to use the 
    default values.

    [X,FVAL]=FMINCON(FUN,X0,...) returns the value of the objective 
    function FUN at the solution X.

    [X,FVAL,EXITFLAG]=FMINCON(FUN,X0,...) returns a string EXITFLAG that 
    describes the exit condition of FMINCON. 
    If EXITFLAG is: 
       > 0 then FMINCON converged to a solution X. 
       0   then the maximum number of function evaluations was reached. 
       < 0 then FMINCON did not converge to a solution.

    [X,FVAL,EXITFLAG,OUTPUT]=FMINCON(FUN,X0,...) returns a structure 
    OUTPUT with the number of iterations taken in OUTPUT.iterations, the number 
    of function evaluations in OUTPUT.funcCount, the algorithm used in 
    OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations, 
    and the first-order optimality (if used) in OUTPUT.firstorderopt.

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA]=FMINCON(FUN,X0,...) returns the Lagrange
multipliers 



    at the solution X: LAMBDA.lower for LB, LAMBDA.upper for UB, LAMBDA.ineqlin is 
    for the linear inequalities, LAMBDA.eqlin is for the linear equalities, 
    LAMBDA.ineqnonlin is for the nonlinear inequalities, and LAMBDA.eqnonlin 
    is for the nonlinear equalities.

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=FMINCON(FUN,X0,...) returns the value of 
    the gradient of FUN at the solution X.

    [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]=FMINCON(FUN,X0,...) returns the 
    value of the HESSIAN of FUN at the solution X.

    Examples 
      FUN can be specified using @: 
         X = fmincon(@humps,...) 
      In this case, F = humps(X) returns the scalar function value F of the HUMPS
function 
      evaluated at X.

      FUN can also be an inline object: 
         X = fmincon(inline('3*sin(x(1))+exp(x(2))'),[1;1],[],[],[],[],[0 0]) 
      returns X = [0;0].

    See also OPTIMSET, FMINUNC, FMINBND, FMINSEARCH, @, INLINE.   top 
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Unconstrained Optimization using Matlab's fminunc

A Basic Call 
Example 
B Call with gradient information supplied 
Matlab's HELP DESCRIPTION

Matlab provides the function fminunc to solve unconstrained optimization problems.

A Basic call of fminunc  top

Without any extra options the syntax is

[x,fval]=fminunc('objfun',x0)

where

objfun:                       name of a function file in which the objective function is coded 
x0:              (column)  vector of starting values 
x        (1st output):        optimal solution vector (column) 
fval (2nd output):      optimal function value

Notes: 
1) Instead of objfun you can use any other name. 
2) If you are not interested in fval, just type x=fminunc('objfun',x0). 
3) Various options can be adjusted, in particular the "gradient option" which utilizes information about the
gradient of the objective function; see B and  Matlab's help description. 
4) fminunc seeks a minimum (as does linprog). If a maximum is sought, code -f in the function file!!

Example:   top

Minimize the objective function

f(x,y,z)=(x2+y2)2-x2-y+z2

(1) You first have to code the objective function. Open a new M-file in the editor and type in:

function f=objfun(x)

f=(x(1)^2+x(2)^2)^2-x(1)^2-x(2)+x(3)^2;

Save the file under (any) name -- here we choose objfun.m. If the file is saved under this name then you
have access to it and can retrieve the value of the function for any input vector x. For example, if you
want to know the value at (1,1,1), type (command window or script file) objfun([1;1;1]) and execute.
The answer in the command window is 3.

(2) Now we can apply fminunc with a properly chosen starting value to find a minimum. We choose x0=
[1;1;1] and execute the following commands in the command window:

>> x0=[1;1;1];[x,fval] = fminunc('objfun',x0)

Warning: Gradient must be provided for trust-region method; 
   using line-search method instead.
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> In C:\MATLABR12\toolbox\optim\fminunc.m at line 211

Optimization terminated successfully: 
 Current search direction is a descent direction, and magnitude of 
 directional derivative in search direction less than 2*options.TolFun

x = 
   0.49998491345499 
   0.50000453310525 
  -0.00000383408095 
fval = 
  -0.49999999985338

The comment below the command line tells that no information about the gradient was provided which
may lead to non-optimal performance.

B Call of fminunc with gradient information supplied    top

Optimization programs usually performs better if gradient information is exploited. This requires two
modifications:

(1) The objective file must be coded such that the gradient can be retireved as second output. For the
function above this requires the following extension of the function file:

function [f,gradf]=objfun(x)

f=(x(1)^2+x(2)^2)^2-x(1)^2-x(2)+x(3)^2; 
gradf=[4*x(1)*(x(1)^2+x(2)^2)-2*x(1);4*x(2)*(x(1)^2+x(2)^2)-1;2*x(3)];

The  2nd output argument, gradf, is the gradient vector of  f  written as column vector.

(2) The program has to be`told' that it shall exploit gradient information. This is done by specifying one of
the optimization options, and the program has to be informed that it has to use this option. The general
syntax is

>> options=optimset('GradObj','on'); 
>> [x,fval]=fminunc('objfun',x0,options)

For the Example, now with gradient information supplied, we execute in the command window:

>> options=optimset('GradObj','on'); 
>> x0=[1;1;1];[x,fval]=fminunc('objfun',x0,options)

Optimization terminated successfully: 
 Relative function value changing by less than OPTIONS.TolFun

x = 
   0.50045437772043 
   0.49981153795642 
   0.00003452966310 
fval = 
  -0.49999989244986

As you can see, the values differ slightly from those obtained before, and are indeed more accurate. 
 

Matlab's HELP DESCRIPTION  top
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FMINUNC  Finds the minimum of a function of several variables. 
    X=FMINUNC(FUN,X0) starts at X0 and finds a minimum X of the function 
    FUN. FUN accepts input X and returns a scalar function value F evaluated 
    at X. X0 can be a scalar, vector or matrix.

    X=FMINUNC(FUN,X0,OPTIONS)  minimizes with the default optimization 
    parameters replaced by values in the structure OPTIONS, an argument 
    created with the OPTIMSET function.  See OPTIMSET for details.  Used 
    options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, GradObj, 
    HessPattern, LineSearchType, Hessian, HessMult, HessUpdate, MaxFunEvals, 
    MaxIter, DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter, 
    PrecondBandWidth, TolPCG, TypicalX. Use the GradObj option to specify that 
    FUN also returns a second output argument G that is the partial 
    derivatives of the function df/dX, at the point X. Use the Hessian option 
    to specify that FUN also returns a third output argument H that 
    is the 2nd partial derivatives of the function (the Hessian) at the 
    point X.  The Hessian is only used by the large-scale method, not the 
    line-search method.

    X=FMINUNC(FUN,X0,OPTIONS,P1,P2,...) passes the problem-dependent 
    parameters P1,P2,... directly to the function FUN, e.g. FUN would be 
    called using feval as in: feval(FUN,X,P1,P2,...). 
    Pass an empty matrix for OPTIONS to use the default values.

    [X,FVAL]=FMINUNC(FUN,X0,...) returns the value of the objective 
    function FUN at the solution X.

    [X,FVAL,EXITFLAG]=FMINUNC(FUN,X0,...) returns a string EXITFLAG that 
    describes the exit condition of FMINUNC. 
    If EXITFLAG is: 
       > 0 then FMINUNC converged to a solution X. 
       0   then the maximum number of function evaluations was reached. 
       < 0 then FMINUNC did not converge to a solution.

    [X,FVAL,EXITFLAG,OUTPUT]=FMINUNC(FUN,X0,...) returns a structure OUTPUT 
    with the number of iterations taken in OUTPUT.iterations, the number of 
    function evaluations in OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, 
    the number of CG iterations (if used) in OUTPUT.cgiterations, and the first-order 
    optimality (if used) in OUTPUT.firstorderopt.

    [X,FVAL,EXITFLAG,OUTPUT,GRAD]=FMINUNC(FUN,X0,...) returns the value 
    of the gradient of FUN at the solution X.

    [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN]=FMINUNC(FUN,X0,...) returns the 
    value of the Hessian of the objective function FUN at the solution X.

    Examples 
      FUN can be specified using @: 
         X = fminunc(@myfun,2)

    where MYFUN is a MATLAB function such as:

        function F = myfun(x) 
        F = sin(x) + 3;

      To minimize this function with the gradient provided, modify 
      the MYFUN so the gradient is the second output argument: 



         function [f,g]= myfun(x) 
          f = sin(x) + 3; 
          g = cos(x); 
      and indicate the gradient value is available by creating an options 
      structure with OPTIONS.GradObj set to 'on' (using OPTIMSET): 
         options = optimset('GradObj','on'); 
         x = fminunc('myfun',2,options);

      FUN can also be an inline object: 
         x = fminunc(inline('sin(x)+3'),2);

    See also OPTIMSET, FMINSEARCH, FMINBND, FMINCON, @, INLINE.   top

http://kstio.com/nm/optimization/unconstrained.html#top
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Optimization problems 



Examples 



Global vs. local optimization 



Global Optimization 

l  In general, can’t guarantee that you’ve found 
global (rather than local) minimum 

l  Some heuristics: 
l  Multi-start: try local optimization from 

several starting positions 
l  Very slow simulated annealing 
l  Use analytical methods (or graphing) to 

determine behavior, guide methods to correct 
neighborhoods 



Global optimization 
l  Finding, or even verifying, global minimum is difficult, in 
     general 
 
l  Most optimization methods are designed to find local 
     minimum, which may or may not be global minimum 
 
l  If global minimum is desired, one can try several widely 
     separated starting points and see if all produce same 
     result 
 
l  For some problems, such as linear programming, global 
     optimization is more tractable 



Existence of Minimum 



Level sets 



Uniqueness of minimum 



First-order optimality condition 



Second-order optimality 
condition 



Constrained optimality 



Constrained optimality 



Constrained optimality 



Constrained optimality 
l  If inequalities are present, then KKT optimality conditions 

also require nonnegativity of Lagrange multipliers 
corresponding to inequalities, and complementarity 
condition 



Sensitivity and conditioning 



Unimodality 



Golden section search 



One-Dimensional Minimization 

l  Golden section 
search: successively 
narrowing the 
brackets of upper and 
lower bounds 

l  Terminating condition: 
|x3–x1|<ε

Start with x1,x2,x3 where f2 is smaller 
than f1 and f3 
Iteration:  
Choose x4 somewhere in the larger 
interval 
Two cases for f4:  
•  f4a: [x1,x2,x4] 
•  f4b: [x2,x4,x3] 

Initial 
bracketing… 

)(min xf
Rx∈



Golden section search 



Golden section search 



Example 



Example (cont.) 



Successive parabolic 
interpolation 



Parabolic Interpolation (Brent) 



Example 



Newton’s method 

Newton’s method for finding minimum normally has quadratic 
convergence rate, but must be started close enough to solution 
to converge 



Example 



Safeguarded methods 



Multidimensional optimization. 
Direct search methods 



Steepest descent method 



Steepest descent method 



Example 



Example (cont.) 



Newton’s method 



Newton’s method 



Example 



Newton’s method 



Newton’s method 



Trust region methods 



Trust region methods 



Quasi-Newton methods 



Secant updating methods 



BFGS method 



BFGS method 



BFGS method 



Example 

For quadratic objective function, BFGS with exact line search finds 
exact solution in at most n iterations, where n is dimension of problem 



Conjugate gradient method 



CG method 



CG method example 



Example (cont.) 



Truncated Newton methods 
l  Another way to reduce work in Newton-like methods is to 

solve linear system for Newton step by iterative method 

l  Small number of iterations may suffice to produce step 
as useful as true Newton step, especially far from overall 
solution, where true Newton step may be unreliable 
anyway 

l  Good choice for linear iterative solver is CG method, 
which gives step intermediate between steepest descent 
and Newton-like step 

l  Since only matrix-vector products are required, explicit 
formation of Hessian matrix can be avoided by using 
finite difference of gradient along given vector 



Nonlinear Least squares 



Nonlinear least squares 



Gauss-Newton method 



Example 



Example (cont.) 



Gauss-Newton method 



Levenberg-Marquardt method 

With suitable strategy for choosing µk, this method can be very robust 
in practice, and it forms basis for several effective software packages 



Equality-constrained 
optimization 



Sequential quadratic 
programming 



Merit function 



Inequality-constrained 
optimization 



Penalty methods 

This enables use of unconstrained optimization methods, but problem 
becomes ill-conditioned for large ρ, so we solve sequence of problems with 
gradually increasing values of , with minimum for each problem used as 
starting point for next problem 



Barrier methods 



Example: constrained 
optimization 



Example (cont.) 



Example (cont.) 



Linear progamming 



Linear programming 



Example: 
linear programming 
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