
 

6.1 Steepest Descent Method 
 

As motivation consider the membrane problem with small deformation and in a  
 

steady state so that the potential energy in a minimum. 
 
 

Potential Energy ( )2 21 1x yT u u dxdy fu x y≅ + + − − ∆ ∆   

 
    =  surface tension   +  external work ,  where 

 
T = tension,  
 
u = deformation and  
 
f is external pressure on the membrane. 

 
 

Use f(p) 1 p≡ + ≅ f(0) + f ’(0)p 

 

   = 1 + 0

1 1
( 0)

2 1 p
p

p
= −

+
= 1 + 1/2 p. 

 
Let p = ( )2 2

x yu u+  so that 

 

( )2 2 2 21
1 1

2x y x yu u u u+ + − ≅ +  

 

P(u) = ( )2 21
2 x yu u fu dxdy

Ω

 + − 
 ∫∫  is an approximation of the total potential energy. 

 
 

One can show the following are equivalent formulations: 
 
 1.   Potential Energy  
 
      P(u) = min P(v) where v is in a "suitable" set of functions, S. 
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 2.   Weak Form 
 
  ( ) 0x x y yT u u fϕ ϕ ϕ+ − =∫∫ ∫∫ , for all “suitable” ϕ  

     
 
3.   Classical Form 
 

-T( )xx yyu u f+ = . 

 
For example, to show a potential energy solution is a weak solution, use u λϕ+  in  
 
P(u) so that f(l) = P ( )u λϕ+  is a function of the real number l.  Because u minimizes the  

 
potential energy, l = 0 will minimize f(l) so that f ‘(0) = 0, which corresponds to the  
 
weak equation. 

 
Consider Ax = d where A is SPD and is from the classical form.  The linear system  
 

is related to the potential energy form where 
 

J(x ) =
1
2

T Tx Ax x d− , from J(x) comes from the potential energy 

 
 

Algebraic Lemma.  J(y) = J(x) + 
1

( ) ( ) ( ) ( )
2

T Ty x A y x y x r x− − − −  

 
 
Proposition 1.  If A is SPD, then 1 and 2 are equivalent 
 

1. Ax  = d, 
 

2. J(x) = min J(y). 
 
 
Proof of Lemma. 
 
 Let ( )y x y x= + − . 

 Use TA A= . 
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 ( ) ( )J y J x y x= + −  

  ( )1
( ) ( ( )) ( ( ))

2
T Tx y x A x y x x y x d= + − + − − + −

 
1 1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2

T T T T T Tx Ax y x Ax x A y x y x A y x x d y x d= + − + − + − − − − −

       
1

( ) ( ) ( ) ( ) ( )
2

T T TJ x y x Ax y x d y x A y x= + − − − + − −  

=
1

( ) ( ) ( ) ( ) ( ).
2

T TJ x y x r x y x A y x− − + − −  

 

Proof  1  implies 2: 

            Ax = d  means r(x) =0. 

            Use the Algebraic Lemma, A being SPD  and  r(x) = 0 to get 

            J(y) = J(x) +
1
2

(y-x)TA(y-x) - 0 ≥ J(x). 

 

Proof  2  implies 1: 

           We want to show  r(x) = 0, that is, [r(x)]i = 0.  

This is equivalent  to showing [r(x)]i  ≥  0 and [r(x)]i  ≤  0. 

            Since y is arbitrary,  

              y = x + ( y - x) and choose y so that 

               y - x ≡ λei . 

                     J(y) = J(x +λei ) , by the Algebraic Lemma 

                    = J(x) +
1
2

(λei)TA(λei) -(λei)Tr(x)    



 4

                               = J(x) +
1
2

λ2aii - λ[r(x)]I 

 0 ≤ J(y) - J(x) = λ(
1
2

λaii -[r(x)]i ) 

Since A is SPD, aii  > 0 .   

(a)  Suppose [r(x)]i < 0 , 

            Let λ ↑ 0. 

            So  eventually  (
1
2

λaii -[r(x)]i ) >0, 

           This implies J(y) - J(x) < 0,  which is a contradiction. 

           Therefore, we must have  [r(x)]i ≥  0. 

(b)  Suppose [r(x)]i > 0 , 

            Let λ ↓ 0.  So  eventually (
1
2

λaii -[r(x)]i ) < 0, and this implies 

            J(y) - J(x) < 0, which is a contradiction.  

           Then we must have  [r(x)]i ≤  0. 

 

Idea for Steepest Descent Method: 

Let f(α ) = J(x0 + αp),  and p be some direction.  We want to choose α so that f(α) 

the smallest possible.  This is a simpler problem because f is a function of a single 

variable.  In order to choose the direction p so that the directional derivative of J(x) is 

the largest possible, we will need the following results. 
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Proposition 2.   1.  Cauchy Inequality. 

 |xTy|  ≤ ||x||2||y||2 

                                         2.  Directional Derivative. 

df

du
 = ∇f ⋅ u , where uTu = 1, 

df

du
 ≡ 

0
lim
t →

( ) ( )f x tu f x

t

+ −
 

                          3.  Direction of Steepest Descent. 

max u |
df

du
| = ||∇f ||2  when u ≡  ∇f /||∇f ||2   

 

Proof of 1 : 

                    0 ≤  f(t) ≡ (x + ty)T(x + ty)  

                               = xTx  + t2 xTy  + t2 yTy          , because x Ty = y Tx. 

                   f ‘(t1) = 0    implies  t1  = - x Ty/yTy .  

                   f “(t1) = 2 yTy > 0 ,  so  f(t1)  is the min. of  f(t). 

                   0 ≤ f(t1) = x Tx  + 2(-x Ty/yTy)(x Ty) + (- x Ty/yTy )2 (y Ty) 

                                                  = x Tx - (x Ty )2/yTy 

       This implies  (x Ty)2 ≤ (x Tx)(yTy) =(||x||2  ||y||2)2. 

 

Proof  of 2 : 

     
0

lim
t →

( ) ( )f x tu f x

t

+ −
    = 

0
lim
t →

 ( 1 2 2

1

( ( , ,.., )) ( (0, ,..., ))n nf x t u u u f x t u u

tu

+ − +
 u1 
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                             + 2 3

2

( (0, ,.., )) ( (0,0, ,..., ))n nf x t u u f x t u u

tu

+ − +
u2 

                             + ...... 

                             + 
( (0,...,0, )) ( (0,0,...,0))n

n

f x t u f x t

tu

+ − +
un  ) 

                           = fx1u1 + ... + fxnun   = ∇f ⋅ u 

 

Proof  of 3: 

            |
df

du
| = |∇f ⋅ u |   ≤   ||∇f ||2 ⋅ ||u||2   = ||∇f ||2  1 

Because  ||u||22 = (∇f /||∇f ||2 )T (∇f /||∇f ||2 )  = 1, 

we may choose u = ∇f /||∇f ||2.  Then for this u 

 
df

du
= ∇f ⋅ u = ∇f ⋅ (∇f /||∇f ||2) =  ||∇f ||2.   

Therefore, the largest possible |
df

du
|  is given by this u.  

 



6.2 Steepest Descent Algorithm in Multiple Directions  
 

 

Consider J(x0 + αp).  We want to choose α and p so that this is the smallest 

possible.  This is a simpler problem because α is a single number, and p is a direction so 

that J should decrease most rapidly. 

 

Proposition 3.  If A is symmetric, then the direction of steepest descent is 

   ∇J = -r(x). 

Proof. 

  

ˆ

,ˆ

, ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ

1
[ ] ( )

2

1
( )
2

1
2

1 1
1 1 1 , use

2 2

[ ( ) ] .

T T
i

i

i ij j i i
i j ii

i ij j i i
i j ii i

j iij ii i ii ii
j i

jij i
j

i

J x Ax x d
x

x a x x d
x

x a x x d
x x

a x x a d a a

a x d

r x

∂
∇ = −

∂

∂
= −

∂

∂ ∂
= −

∂ ∂

= + − =

= −

= −

∑ ∑

∑ ∑

∑ ∑

∑

 

 

Proposition 4.  If A is SPD, then 

   
( ) min ( )where

ˆ ˆand .
T

T

J x J x r

r r
x x r

r Ar

α α

α α

+

+

= +

= + =
 

Proof. Let f(α) = J(x + αp)  where p = -r, and use the Algebraic Lemma to get 

   f(α) = J(x) + 1/2 α2 pTAp - αpTr. 
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 Then f '(α) = 0 = α pTAp - pTr, and note pTAp > 0 for nonzero p. 

 Thus for p = -r we have α = -rTr / rTAr and x+ = x + α(-r). 

 Or,  x+ = x + (rTr / rTAr) r. 

 

Steepest Descent Algorithm. 

  xo = initial guess 

for m = 0, maxm 

   rm = d - Axm 

   α = rm Trm  / rm TArm  

   xm+1= xm + α rm 

   test for convergence. 

 

The next residual rm+1 may be computed using the previous residual: 

     rm+1 = d - A xm+1 = d - A(xm + αrm) = d - Axm - αArm = rm - αArm . 

Thus, each iteration of the steepest descent algorithm requires one matrix-vector product, 

two dotproducts and one vector update. 

 

 Consider the partial differential equation - uxx - uyy = f(x,y) where u must be equal 

to zero on the boundary of the unit square.  In the Matlab code observe the use of array 

operations.  The vectors are represented as 2D arrays, and the sparse matrix A is not 

explicitly stored.  The product Ar is stored in the 2D array q.  Here the partial differential 

equation has right side equal to 200 + 200sin(πx)sin(πy), and the solution is required to 

be zero on the boundary of  (0,1)x(0,1).  The steepest descent method appears to be 
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converging, but after 200 iterations the norm of the residual is still only about 10-1.  In the 

next section the conjugate gradient method will be described.  One calculation is included 

here and shows that after only 26 iterations of the conjugate gradient method, the norm of 

the residual is about 10-4.  It is interesting to note if the right side is 200sin(πx)sin(πy), 

then the steepest descent method will converge in one iteration….Why? 

 

Matlab Steepest Descent Code (st.m) 

clear; 
n = 20; 
h = 1./n; 
u(1:n+1,1:n+1)= 0.0; 
r(1:n+1,1:n+1)= 0.0; 
r(2:n,2:n)= 1000.*h*h; 
for j= 2:n 
   for i = 2:n 
      r(i,j)= h*h*200*(1+sin(pi*(i-1)*h)*sin(pi*(j-1)*h)); 
   end 
end 
q(1:n+1,1:n+1)= 0.0; 
err = 1.0; 
m = 0; 
rho = 0.0; 
while ((err>.0001)*(m<200)) 
   m = m+1; 
   oldrho = rho; 
   rho = sum(sum(r(2:n,2:n).^2)); 
   for j= 2:n 
      for i = 2:n 
         q(i,j)=4.*r(i,j)-r(i-1,j)-r(i,j-1)-r(i+1,j)-r(i,j+1); 
      end 
   end 
   alpha = rho/sum(sum(r.*q)); 
   u = u + alpha*r; 
   r = r - alpha*q; 
   err = max(max(abs(r(2:n,2:n)))); 
   reserr(m) = err; 
end 
m 
semilogy(reserr) 
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Log(norm(r)) versus m for the Steepest Descent Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Log(norm(r)) versus m for the Conjugate Gradient Method 
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Steepest Descent with Multiple Directions. 
 

The steepest descent method computes the smallest J(x) for each direction: 

1 0
0 0x x rα= +  

2 1 0
1 1 0 0 1 1x x r x r rα α α= + = + + . 

In order to obtain smaller values of J(x), we may minimize over larger dimensional sets 

of functions given by multiple directions: 

1 0
0 0x x c r= +  

2 1
0 0 1 1x x c r c r= + +  (use two directions). 

Next, c0 and c1 now will be found so that 

0 1
0 1

,
min ( , )
c c

f c c  where 1
0 1 0 0 1 1( , ) ( ).f c c J x c r c r≡ + +  

In general, we consider m+1 directions 

 1
0 0

m m
m mx x c r c r+ = + + +L  

  0 0 0( , , ) ( )m
m m mf c c J x c r c r≡ + + +L L  

Find c = (c0,…,cm) so that min ( ).
c

f c  Use the vector notation so that 

  [ ]
0 ( 1 ) ( 1)

1 0

n m m m

m m m m

m

c

x x r r x R c

c

× + + ×

+

 
 = + = + 
  

L M . 

Find c so that ( ) ( ) is a minimum.mf c J x Rc= +  
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Proposition 5.  If A is SPD, and R has full column rank, then c such that f(c) is 

minimum is given by ( ) .T T
mR AR c R r=  

 

Proof.  Again use the Algebraic Lemma to obtain 

  1

1
( ) ( ) ( ) ( ) ( )

2
T T

m m mJ x J x Rc A Rc Rc r+ = + − . 

             Define  

  

1ˆ( ) ( ) ( ) ( )
2
1 ˆˆ ,
2

ˆˆwhere is SPD and .

T T
m

T T

T T
m

J c Rc A Rc Rc r

c Ac R d

A R AR d R r

≡ −

= −

≡ ≡

 

ˆ TA R AR≡  is SPD because A is SPD and R has full column rank.  Use the 

equivalence, given by Proposition 1, of the minimum of ˆ( )J c  and the solution of  

ˆˆ .Ac d=  

 

One difficulty with this is that as m gets large more computations must be done to 

find RTAR = [ri TA rj] and then to solve (RTAR) c = RTrm.  If the residuals were 

orthogonal with respect to the inner product given by A, then the matrix RTAR would be 

diagonal.  The conjugate gradient method uses a version of the Gram-Schmidt process to 

ensure this is the case. 



6.3 Conjugate Gradient Method 
 
 
 In order to simplify the solution of (RTAR)c = RTrm, we will apply the Gram- 
 
Schmidt  process to the residuals and use the inner product given by the SPD matrix, A. 
 
This will convert the matrix (RTAR) into a diagonal matrix. 
 
 
Two directions m = 1: 

 

 
 
 
 
 
 

0 0

1 1 0

1 0 A

T
1 0 0

T T
1 0 0 0

T
T1 0

0 0T
0 0

p   r

p   r  p

Choose   so that (p ,p )   0

(r   p ) Ap   0

r Ap   p Ap   0

-r Ap
So,   , where the p Ap 0 because A is SPD.

p Ap

β
β

β

β

β

≡

≡ +
=

+ =

+ =

= >

[ ]

2 1
0 0 1 1

1
0 0 1 1 0

1
0 0 1 1

0 1

1
0 0 1 1

T T
1

0 1

x   x   c p   c p  

 x   c p  c (r p )

ˆ ˆ       x   c r   c r

Choose c  and c  so that

J(x  +c p c p ) is a minimum. 

This true if and only if 

P APc P r  where

            P  p  p  and 

      

β

= + +

= + + +

= + +

+

=

=

0

1

T T T
0 0 0 1 0 0 1

T T T
11 0 1 1 1 1

c
      c .

c

Or,

p Ap p Ap c p r
   .

cp Ap p Ap p r

 
=  

 

    
=    

       
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Proposition 6.  Let A be SPD. 
 
If (a). p0 = ro, 

 

 (b). p1 = r1 + β0 p0 where β0 = -r1
TAp0/p0

TAp0, 
 
 (c). x1 = x0 + α0 r0 where α0 = r0

Tr0/r0
TAr0, 

 
then 
 

1. p1
TAp0 = 0, 

 
2. p0

Tr1 = 0, and hence, c0 = 0, 
 

3. p1
Tr1 = r1

Tr1, and hence,  c1 = r1
Tr1/p1

TAp1 =  α1 and 
 

4. β0 = r1
Tr1/ r0

Tr0.  
 

Overall, p1 = r1 +  β0 p0  and x2 = x1 + α1 p1. 
 
Proof of 1. By definition of β . 
 
 
Proof of 2. 

 
Proof of 3. 

  
1 1 1 0 0 1

1 1 0 0 1

1 1 0

( )

0.

T T

T T

T

p r r p r

r r p r

r r

β

β

β

= +

= +

= +

 

 
 
 
 

1 1 1

0 0 0

0 0 0

0 0 0

T T
0 1 0 0 0 0

T T
0 0 0 0 0

r   r(x )  d - Ax  

 d - A(x p ) 

 (d - Ax ) - Ap

r  - Ap

p r   p (r - Ap ) 

 r r - p Ap  

 0.

α
α

α

α

α

= =
= +

=
=

=

=

=
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Proof  of 4. 

  

1 1 0 0 0 0

0 0
0 0 0 0 0 02

0 0

1 0 0 0 0

0 0
0 0 0 0

0 0

1 0 1 1
0

0 0 0 0

( ) ( )

( ) ( )
( )

( )

( ) ( )

Thus, .

T T

T
T T T

T

T T

T
T T

T

T T

T T

r r r Ar r Ar

r r
r r r r Ar Ar

r Ar

r Ar r Ar Ar

r r
r Ar Ar Ar

r Ar

r Ar r r

r Ar r r

α α

α

β

= − −

= − +

= −

= −

= − =

 

 
 
 
Use three directions   m=2: 

 

 
 

3 2
0 0 1 1 3 3

0 0

1 1 0 0

2 2 1 1

1 2 1 A

T
2 1 1 1

T
2 1

1 T
1 1

x x c p c p c p

p r

p r p

p r p

Choose   so that (p , p ) 0

(r p ) Ap 0

-r Ap
.

p Ap

β
β
β

β

β

= + + +
≡
≡ +

≡ +
=

+ =

=

2 T T
0 0 1 1 2 2 2

0 0 0 2 0 20

1 1 1 1 2

22 0 2 2 2 2

0 2 1 2 0 2

min J(x c p c p c p ) if and only if P APc P r .

Or,

0

0 0       .

0

Fortunately, we can show

0 and 

T T T

T T

T TT

T T T

p Ap p Ap p rc

p Ap c p r

cp Ap p Ap p r

p r p r p Ap p

+ + + =

         =               

= = = 2 0

3 2
0 1 2 2

2 2 2 2
2 2

2 2 2 2

0so that

0 0  where

.

T

T T

T T

Ap

x x p p c p

p r r r
c

p Ap p Ap
α

=

= + + +

= = =
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Proposition 7.   Let A be SPD and m = 2. 

 
     
 
 
Proof of 1. 
 

 

1
0 1

2 2 1 1

2 1
1

1 1

2 1
1 1

1 1
1

1 1

0 2

1 2

If   (a).   Let p , x , p  be defined as in Proposition 6.

 (b).   

-

           

     (c).    

            ,

then

    1.     0

    2.     0

    3. 

T

T

T

T

T

T

p r p

r Ap

p Ap

x x p

r r

p Ap

p r

p r

β

β

α

α

= +

=

= +

=

=

=

1 2

0 2

2 2
2 2 2 2 2 2

2 2

2 2
1

1 1

3 2
2 2 1 1 2 2

    0

    4.     0

    5.      ,and hence, 

    6.    .

Overall,  and .

T

T

T
T T

T

T

T

p Ap

p Ap

r r
p r r r c

p Ap

r r

r r

p r p x x p

α

β

β α

=

=

= = =

=

= + = +

2 1 1 1

0 2 0 1 1 1

0 1 1 0 1 0 1

0 0 0 0

-

( - )

           -     , 0

           ( - )

           0 .

          

T T

T T T

T

r r c Ap

p r r r c Ap

r r c r Ap r Ap

r r c Ar

=

=

= =

=
=
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Conjugate Gradient Method. 
 

 
 
Preconditioned Conjugate Gradient Algorithm  (M = I is Conjugate Gradient). 
 

 

0

0 0 0 0

1

1

1 1

1 1

1 1

choose 

ˆ ˆsolve  and 

0,max

ˆ
( )

ˆsolve ( )

ˆ

ˆ

ˆ . (

T
m m

m T
m m

m m
m m

m m m m

m m

T

m m
m T

m m

m m m m

x

Mr r p r

for m m

r r
steepest descent

p Ap

x x p

r r Ap

test for convergence

Mr r preconditioning

r r

r r

p r p conjugatedi

α

α
α

β

β

+

+

+ +

+ +

+ +

= =
=

=

= +

= −

=

=

= + )rection

 

1

1 1 1

1

0 0

      (      .)

     (    " "  ( , ) 0.)

min ( ) if and only if  

0 0 0

0 0 0

0 0 0

0 0 0

m m
m

m m m m m A

m T T
m

T

T
m m

x x p represents the steepest descent formula

p r p repesents the conjugate direction p p

J x P APc P r

p Ap

p Ap

α α

β β

+

+ + +

+

= +

= + =

=







O
O

0
0

      
0
T

m m m

c

c p r

   
   
    =    

    
       

MM
M



6.4 Preconditioned Conjugate Gradient 
 

Error for the CG is a function of the condition number of A, 2

max
( ) .

min
A

λ
κ

λ
=  

 
The fastest convergence of the CG method occurs when 2( ) 1Aκ ≈ .  Preconditioning can  
 
Be viewed as finding an equivalent ˆˆ ˆAX d= such that  
 

2 2
ˆ( ) 1 ( ) 1K A K A− < −  

 
There are three equivalent descriptions of the CG scheme: 
 

1. 1( ) min ( ...... )m m
C o o m mJ x J x c r c r+ = + + +  

 
where ri are residual directions, 

 
2. 1( ) min ( ...... )m m

C o o m mJ x J x c p c p+ = + + +  

 
where pi are conjugate directions, and 

 
3. 1

1( ) min ( ...... )m o m
C o o o m oJ x J x c r c Ar c A r+ = + + +  

 
where Air0 are Krylov directions. 

 
 
Proposition 8.   If A is SPD, then 1,2 and 3 are equivalent. 
 
 
Proof. 

1 2↔ , see formal proof on Stoer and Bulrich. 
 
2 3↔ , see Kelley. 
 

 
Connection among 1,2,3: 
 
Let pi be the conjugate directions as defined in the conjugate gradient algorithm. 
 
 o op r≡  



 2

 
1 o

o ox x pα= +  

 
1

1 1

2 1
1 1

o o o

o o

r r Ap

p r p

x x p

α
β

α

= −
= +

= +

 

  

1
1 1

1
1 1

1

1

( )

( ) ,

( )

, .

o o

o o

o
o o o o o o o

o
o o o

x r p

x r r residual directions

x r r Ap r

x c r c Ar Krylov directions

α β

α β

α α α β
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Proposition 9.  If A is SPD, then 
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where Ax = d, 2 2( )Aκ κ= and 2 .T

A
x x Ax=  

 
 
“Outline of proof" 
 

Use the Algebraic Lemma 
 

  
1 1 1( ) ( ) 1/2( ) ( )m m T mJ x J x x x A x x+ + +− = − −  

    211/2 .m

A
x x+= −  

 
 1 ( .......... )m o m
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   1

( .......... )

( ......... )

o m
o o m o

o m
o m o
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x x c I c A c A r

= − − +

= − − + +  

 o
or d Ax= −  
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o

o

Ax Ax

A x x
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1

1( ......... ) ( )m o m o
o m ox x x x c I c A c A r A x x+− = − − + + −  
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              1( ( ......... ) )( )m o
o mI c I c A c A A x x= − + + −  

 
 
So, by the Algebraic Lemma 
 

2 21 12( ( ) ( )) ( )( )m m o
mA A

J x J x x x q A x x+ +− = − ≤ −   where 

 
   1( ) 1 ( ...... ).m

m o mq z c z c z += − + +  

 
To obtain an error estimate choose a "good" polynomial qm(z). 
 
 
Form of Preconditioner. 
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Apply CG to ˆˆ ˆAx d=  and use the definition 1 TM S S− =  to get the PCG . 

 

Examples. 

   1. M = diagonal part of A 

                             or 

                       = block diagonal part of A 

               2. M = incomplete Cholesky factorization 

               3. M = incomplete domain decomposition 
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               4. M for symmetric SOR splitting as follows: 
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Matlab Preconditioned Conjugate Gradient with SSOR (cgssor.m) 
 
 
clear; 
% 
%  Solves  -uxx -uyy = 200+200sin(pi x)sin(pi y) with zero BCs 
%  Uses PCG with SSOR preconditioner 
%  Uses 2D arrays for the column vectors 
%  Does not explicity store the matrix 
% 
w = 1.5; 
n = 20; 
h = 1./n; 
u(1:n+1,1:n+1)= 0.0; 
r(1:n+1,1:n+1)= 0.0; 
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rhat(1:n+1,1:n+1) = 0.0; 
%  Define right side of PDE 
for j= 2:n 
   for i = 2:n 
      r(i,j)= h*h*(200+200*sin(pi*(i-1)*h)*sin(pi*(j-1)*h)); 
   end 
end 
 
 
 
 
p(1:n+1,1:n+1)= 0.0; 
q(1:n+1,1:n+1)= 0.0; 
err = 1.0; 
m = 0; 
rho = 0.0; 
%  Begin PCG iterations 
while ((err>.0001)*(m<200)) 
   m = m+1; 
   oldrho = rho; 
%  Execute SSOR preconditioner 
   for j= 2:n 
      for i = 2:n 
         rhat(i,j)=w*(r(i,j)+rhat(i-1,j)+rhat(i,j-1))/4.; 
      end 
   end 
   rhat(2:n,2:n) = ((2.-w)/w)*(4.)*rhat(2:n,2:n); 
   for j= n:-1:2 
      for i = n:-1:2 
         rhat(i,j)=w*(rhat(i,j)+rhat(i+1,j)+rhat(i,j+1))/4.; 
      end 
   end 
%  Find conjugate direction 
   rho = sum(sum(r(2:n,2:n).*rhat(2:n,2:n))); 
   if (m==1)  
      p = rhat; 
   else 
      p = rhat + (rho/oldrho)*p; 
   end 
%  
%  Use the following line for steepest descent method 
%   p=r; 
% 
%  Executes the matrix product q = Ap without storage of A 
   for j= 2:n 
      for i = 2:n 
         q(i,j)=4.*p(i,j)-p(i-1,j)-p(i,j-1)-p(i+1,j)-p(i,j+1); 
      end 
   end 
%  Executes the steepest descent segment  
   alpha = rho/sum(sum(p.*q)); 
   u = u + alpha*p; 
   r = r - alpha*q; 
%  Test for convergence via the infinity norm of the residual 
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   err = max(max(abs(r(2:n,2:n)))); 
   reserr(m) = err; 
end 
m 
semilogy(reserr) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Log(norm(r)) versus m for PCG with SSOR 
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6.5 Generalized Minimum Residual 
 
 If A is not SPD, then the PCG will not be applicable because it is based on the 

equivalent minimization of J(x).  Two alternatives, amoung others, are 

 1. replace Ax = d with the normal equations ATAx = ATd, 

 2. replace minimization of J(x) with the minimization of  

   r(x)Tr(x) where r(x) = d - Ax. 

The normal equation approach can be computationally expensive or ill-conditioned.  In order to 

make the minimization of the residual less computationally less expensive, the minimization is 

done over an m dimensional subspace. 

 

Definition. Km = {x | x = 
1

0

m
i

i oA rα
−

∑ } is called a Krylov space.  The Air0 are called 

Krylov vectors .  A slight abuse of notation is to form a matrix, also written as Km, as 

Km = [r0  Ar0  … Am-1r0 ]. 

 

Definition. The generalized residual method is given by 

   xm = x0 + 
1

0

m
i

i oA rα
−

∑  where  

   r(xm)Tr(xm) = min r(x)Tr(x) with x ∈ x0 + Km. 

  If after m steps the method is restarted with x0 replaced by xm, then it is  

  called the GMRES(m) method. 
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 The main benefit of using the Krylov subspaces is that  

  AKm is contained in Km+1. 

This is very useful in the solution of the minimization, which is related to finding the least squares 

solution of 

  

1
0

0
0

1
1 0

0 0
0

0

0 0 0

1

0

( )

[ ]

.

m
i

i

m
i

i

m

m

m

A x A r d
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= − =
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∑

∑
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 In order to efficiently solve this least squares problem, we will construct an orthonormal 

basis, one column vector per iteration, of Km.  Let Vm = [v1 ...  vm] be such a basis.  Since 

AKm is contained in Km+1, each column in AVm should be a linear combination of columns in 

Vm+1. 

  Av1 = v1 h11 + v2 h21  where, by the orthonormal basis property, 

   v1
TAv1 = h11 and v2

TAv1 = h21. 

  Av2 = v1 h12 + v2 h22 + v3 h32   where, by the orthonormal basis property, 

   v1
TAv2 = h12, v2

TAv2 = h22 and   v3
TAv2 = h32. 
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The matrix form of this is 

 
[ ] [ ]

11 12

21 22
1 2 1 2 3

32

1

0

0 0

.m m

h h

h h
Av Av v v v

h

AV V H+

 
 
 =
 
 
 

=

L
LL L L
L

 

A is nxn, Vm is nxm, and H is and (m+1)xm Hessenberg matrix.  The QR factorization of 

Hessenberg matrices are easy to compute via the Givens transformation.  

 The first column in Vm will be the normalized r0 

  r0 = b v1  where v1
Tv1 = 1 so that b = (r0

Tr0)1/2. 

Hence, r0 is the first column of Vm+1 times b, that is, 

  r0 = Vm+1e1 b where e1 = [1 0.....]T. 

Then the least squares problem can be written as 

  AKm α = r0, or 

  AVm α = Vm+1e1 b. 

 

Proposition 10. The least squares solution of AKm α = r0 is given by the least squares 

solution of Hα = e1 b where b = (ro
Tro)1/2 and AVm = Vm+1H. 

 

Proof.   AVm α = Vm+1e1 b 

   Vm+1H α = 
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The least squares solution means R(α)TR(α) is a minimum where 

  R(α) = Vm+1e1 b - Vm+1H α . 

 

Since Vm+1 is orthonormal,  

  R(α)T R(α) = (Vm+1e1 b - Vm+1H α)T(Vm+1e1 b - Vm+1H α) 

    = (e1 b - Hα)T Vm+1
TVm+1 (e1 b - Hα) 

    = (e1 b - Hα)T (e1 b - Hα). 

So,  this is the least squares solution of Hα = e1 b. 

 

 In order to find the least squares solution, we must solve the normal equations via the 

QR factors of H.  Let H = QR so that the normal equation becomes 

   HTHα = HT e1 b  

   R α =  QT e1 b. 

The Givens transformation can be used to construct the QR factorization of H.  Moreover, the 

basis and Hessenberg matrix can be constructed one column per iteration.  The following 

implementation solve the Poisson problem where the matrix product step is a sparse matrix 

product, and the unknowns are listed in a 2D space grid array. 

 

Matlab Code GMRES2d.m 

% gmres method for Poisson equation 
% see C. T. Kelley's text 
% see Matlab file gmres.m 
clear;                                    
%  Input data.  
nx = 20; 
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ny = nx; 
errtol=.0001; 
kmax = 30; 
%  Initial guess.  
x0(1:nx+1,1:ny+1) = 0.0;                  
x = x0; 
h = zeros(kmax); 
v = zeros(nx+1,ny+1,kmax); 
c = zeros(kmax+1,1); 
s = zeros(kmax+1,1); 
b(1:nx+1,1:ny+1) = 200./(nx*nx); 
r = b; 
rho = sum(sum(r(2:nx,2:ny).*r(2:nx,2:ny)))^.5; 
g = rho*eye(kmax+1,1); 
errtol = errtol*rho; 
v(2:nx,2:ny,1) = r(2:nx,2:ny)/rho; 
k = 0; 
%  Begin gmres loop. 
while((rho > errtol) & (k < kmax))         
    k = k+1; 
%  Matrix vector product. 
    v(2:nx,2:ny,k+1) = -v(1:nx-1,2:ny,k)-v(3:nx+1,2:ny,k)- 
   v(2:nx,1:ny-1,k)-v(2:nx,3:ny+1,k)+4.*v(2:nx,2:ny,k); 

%  Begin modified GS. May need to reorthogonalize.  
    for j=1:k                               
        h(j,k) = sum(sum(v(2:nx,2:ny,j).*v(2:nx,2:ny,k+1))); 
        v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)-h(j,k)*v(2:nx,2:ny,j); 
    end 
    h(k+1,k) = sum(sum(v(2:nx,2:ny,k+1).*v(2:nx,2:ny,k+1)))^.5; 
    if(h(k+1,k) ~= 0) 
         v(2:nx,2:ny,k+1) = v(2:nx,2:ny,k+1)/h(k+1,k); 
    end 
%  Apply old Givens rotations to h(1:k,k). 
    if k>1                                 
       for i=1:k-1 
         hik    = c(i)*h(i,k)-s(i)*h(i+1,k); 
         hipk   = s(i)*h(i,k)+c(i)*h(i+1,k); 
         h(i,k) = hik; 
         h(i+1,k) = hipk; 
       end 
    end 
    nu = norm(h(k:k+1,k)); 
%  May need better Givens implementation.  
%  Define and Apply new Givens rotations to h(k:k+1,k).     
    if nu~=0                               
        c(k) = h(k,k)/nu; 
        s(k) = -h(k+1,k)/nu; 
        h(k,k) = c(k)*h(k,k)-s(k)*h(k+1,k); 
        h(k+1,k) = 0; 
        gk   = c(k)*g(k) -s(k)*g(k+1); 
        gkp  = s(k)*g(k) +c(k)*g(k+1); 
        g(k) = gk; 
        g(k+1) = gkp; 
    end 
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    rho=abs(g(k+1)); 
    mag(k) = rho; 
 end  
%  End of gmres loop.   
%  h(1:k,1:k) is upper triangular matrix in QR. 
  y=h(1:k,1:k)\g(1:k);  
%  Form linear combination. 
for i=1:k                                  
   x(2:nx,2:ny) = x(2:nx,2:ny) + v(2:nx,2:ny,i)*y(i); 
end 
semilogy(mag) 
%  mesh(x) 
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