Numerical Methods

/

Optimization algorithms

5

Nonlinear Programming Algorithms

5.1 Introduction

This chapter describes algorithms that have been specifically designed for
finding optima of Nonlinear Programming (NLP) problems.

5.1.1 General NLP problem

The generic NLP problem has been introduced in Chapter 1:

min f(z)
s.t. gi;(x) <0 for some properties i, inequality constraints, (5.1)
gi(z) = 0 for some properties i, equality constraints.

where x is moving in a continuous way in the feasible set X that is defined
by the inequality and equality constraints. An important distinction from the
perspective of the algorithms is whether derivative information is available on
the functions f and g;. We talk about first order derivative information if the
vector of partial derivatives, called the gradient, is available in each feasible
point.

The most important distinction is that between smooth and nonsmooth
optimization. If the functions f and g are continuously differentiable, one
speaks of smooth optimization. In many practical models, the functions are
not everywhere differentiable as illustrated in Chapter 2 e.g. Figure 2.3.

5.1.2 Algorithms

In general one would try to find “a” or “the” optimum with the aid of software
called a solver, which is an implementation of an algorithm. For solvers related
to modeling software, see e.g. the GAMS-software (www.gams.com), AMPL
(www.ampl.com), Lingo (www.lindo.com) and AIMMS (www.aimms.com).

92 5 Nonlinear Programming Algorithms

Following the generic description of Térn and Zilinskas (1989), a NLP al-
gorithm can be described as:

Tpp1 = Alg(Tg, Th—1, .., o) (5.2)

where index k is the iteration counter. Formula (5.2) represents the idea that
a next point xy11 is generated based on the information in all former points
Tk, Tk_1,.-.,To, Where xq is called the starting point. The aim of a NLP algo-
rithm is to detect a (local) optimum point 2* given the starting point zy. Usu-
ally one is satisfied if convergence takes place in the sense of x; — z* and/or
f(zr) — f*. Beside the classification of using derivative information or not,
another distinction is whether an algorithm aims for constrained optimization
or unconstrained optimization. We talk about constrained optimization, if at
least one of the constraints is expected to be binding in the optimum, i.e.
gi(z*) = 0 for at least one constraint 7. Otherwise, the constraints are either
absent or can be ignored. We call this unconstrained optimization.

In literature on NLP algorithms, see e.g. Scales (1985) and Gill et al.

(1981), the basic cycle of Algorithm 9 is used in nearly each unconstrained
NLP algorithm.

Algorithm 9 GeneralNLP(f,z()

Set k:=0
while passing stopping criterion
k=k+1

determine search direction 7

determine step size A\r along line xx + Arg

next iterate is Tx4+1 := Tk + ATk
endwhile

The determination of the step size Ay is done in many algorithms by run-
ning an algorithm for minimizing the one dimensional function ¢, (A\) =
f(zp + Arg). This is called line minimization or line search, i.e. f is mini-
mized over the line zy + Arg. In the discussion of algorithms, we first focus
on minimizing functions in one variable, in Section 5.2. They can be used
for line minimization. In Section 5.3, algorithms are discussed that require
no derivative information. We will also introduce a popular algorithm that
does not follow the scheme of Algorithm 9. Algorithms that require derivative
information can be found in Section 5.4. A large class of problems is due to
nonlinear regression problems. Specific algorithms for this class are outlined
in Section 5.5. Finally, Section 5.6 outlines several concepts that are used to
solve NLP problems with constraints.

5.2 Minimizing functions of one variable 93

5.2 Minimizing functions of one variable

Two concepts are important in finding a minimum of f : R — R; that of
interval reduction and that of interpolation. Interval reduction enhances de-
termining an initial interval and shrinking it iteratively such that it includes
a minimum point. Interpolation makes use of information of function value
and/or higher order derivatives. The principle is to fit an approximating
function and to use its minimum point as a next iterate. Practical algorithms
usually combine these two concepts. Several basic algorithms are described.

5.2.1 Bracketing

In order to determine an interval that contains an internal optimum given
starting point xg, bracketing is used. It iteratively walks further until we are
certain to have an interval (bracket) [a, b] that includes an interior minimum
point. The algorithm enlarges the initial interval with endpoints xg and zo+e

Algorithm 10 Bracket(f, xo, €, a,b)
Set k:=1, 0= ﬁ
if (F(z0 +€) < F(20))
1 =0+ €
else if (f(zo —€) < f(x0))
X1 =g — €
else STOP; x is optimal
repeat
k=k+1
Tk = Th-1 + 0(Th—1 — Th—2)
antil (f(z) > f(21))
a := min{xg, Tp_2}
b := max{xk, Tx—2}

with a step that becomes each iteration a factor g > 1 bigger. Later, in Section
5.2.3 will be explained why exactly the choice p = % is convenient. It stops
when finally x;_1 has a lower function value than z; as well as zp_s.

Ezample 5.1. The bracketing algorithm is run on the function f(z) =z + zl—fl
with starting point zg = 0 and accuracy € = 0.1. The initial interval [0,0.1]
is iteratively enlarged represented by [rj_2,)] and walking in the positive
direction. After 7 iterations, the interval [1.633,4.536] certainly contains a
minimum point as there exists an interior point x,_; = 2.742 with a func-
tion value lower than the end points of the interval; f(2.742) < f(1.633) and

£(2.742) < f£(4.536).

94 5 Nonlinear Programming Algorithms

Table 5.1. Bracketing for f(z) =z + Il—fl, 20 =0,e=0.1

klzp—2 zx f(zk)
0 0.000 16.00
1 0.100 14.65
2(0.000 0.261 12.94
3/0.100 0.524 11.03
410.262 0.947 9.16
5
6
7

0.524 1.633 7.71
0.947 2.742 7.02
1.633 4.536 7.43

The idea of interval reduction techniques is now to reduce an initial interval
that is known to contain a minimum point and to shrink it to a tiny interval
enclosing the minimum point. One such a method is bisection.

5.2.2 Bisection

The algorithm departs from a starting interval [a, b] that is halved iteratively
based on the sign of the derivative in the midpoint. This means that the
method is in principle only applicable when the derivative is available at the
generated midpoints. The point xj converges to a minimum point within the
interval [a, b]. If the interval contains only one minimum point, it converges
to that. At each step, the size of the interval is halved and in the end, we are

Algorithm 11 Bisect([a, V], f,€)

Set k:=0, a0 :=a and by := b
while (by — ar > €)

if f'(zx) <0
Ap+1 ‘= Tk and bk+1 = bk
else
ak+1 = ag and bg41 = Tk
k:=k+1
endwhile

certain that the current iterate xy is not further away than € from a minimum
point. It is relatively easy to determine for this algorithm how many iterations
corresponding to (derivative) function evaluations are necessary to come closer
than € to a minimum point. Since | bg1 — ax41 | = 3| by — ai |, the number
of iterations necessary for reaching e-convergence is:

|bk—ak\:(%)k|bo—a0|<e =
Ine—In|bp—ao]|
ln% :

1\k
(§)<m = k>

5.2 Minimizing functions of one variable 95
Table 5.2. Bisection for f(z) =z + Il—fl, [ao, bo] = [2,4.5], e = 0.01

ay b xp flzw) f(xr)
2.000 4.500 3.250 7.0147 0.114
2.000 3.250 2.625 7.0388 -0.218
2.625 3.250 2.938 7.0010 -0.032
2.938 3.250 3.094 7.0021 0.045
2.938 3.094 3.016 7.0001 0.008
2.938 3.016 2.977 7.0001 -0.012
2.977 3.016 2.996 7.0000 -0.002
2.996 3.016 3.006 7.0000 0.003
2.996 3.006 3.001 7.0000 0.000

>

0~ Ok WD~ O

For instance, by — ar = 4 requires at least 9 iterations to reach an accuracy
of e =0.01.

Ezample 5.2. The bisection algorithm is run on the function f(z) = = + zl—fl
with starting interval [2,4.5] and accuracy € = 0.01. The interval [ag, bg] is
slowly closing around the minimum point z* = 3 which is approached by
x. One can observe that f(zy) is converging fast to f(z*) = 7. A stopping
criterion on convergence of the function value, | f(xr) — f(zr—1) |, would
probably have stopped the algorithm earlier. The example also shows that
the focus of the algorithm is on approximating a point z* where the derivative
is zero, f'(z*) = 0.

The algorithm typically uses derivative information. Usually the efficiency
of an algorithm is measured by the number of function evaluations necessary
to reach the goal of the algorithm. If the derivative is not analytically or
computationally available, one has to evaluate in each iteration two points,
xk and zp 4+ 9, where 4 is a small accuracy number such as 0.0001. Evaluating
in each iteration 2 points, leads to a reduction of the interval to its half at
each iteration.

Interval reduction methods usually use the function value of two interior
points in the interval to decide the direction in which to reduce it. One
elegant way is to recycle one of the evaluated points and to use it in the next
iterations. This can be done by using the so-called Golden Section rule.

5.2.3 Golden Section search

This method uses two evaluated points | (left) and r (right) in the interval
[ak, by], that are located in such a way that one of the points can be used again
in the next iteration. The idea is sketched in Figure 5.1. The evaluation points
I and r are located with fraction 7 in such a way that = a4+ (1—7)(b—a) and
r =a+7(b—a). Equating in the Figure 5.1 the next right point to the old
left point gives the equation 72 = 1 — 7. The solution is the so-called Golden
Section number 7 = % ~ 0.618.

96 5 Nonlinear Programming Algorithms

a, I=xo r=X1 bl
1 | | |
a, l=x, 1 b,
| —t |
aj I r=x3 bj

Fig. 5.1. Golden Section search

This value also corresponds to the value o used in the Bracketing algorithm
in the following way. Using the outcomes of the Bracketing algorithm as input
into the Golden Section search as [a, b] gives that the point zj_1 (of algorithm
Bracket) corresponds to zg (in algorithm Goldsect). This means that it does
not have to be evaluated again.

Ezample 5.3. The Golden Section search is run on the function f(z) = x+ ;—fl
with starting interval [2, 4.5] and accuracy € = 0.1 The interval [ag, bk] encloses
the minimum point * = 3. Notice that the interval is shrinking slower than
by bisection, as | by11 — ary1 | = 7| by —ax | = 7F 7Y by —ay |. After 8 iter-
ations the reached accuracy is less than by bisection, although for this case
x) approaches the minimum very well. On the other hand, only one function

evaluation is required at each iteration.

Algorithm 12 Goldsect([a,b], f,€)

Set k:=1, a1 := a and by ::b,T::@
li=x0:=a+(1—-7)b—a),r=z1:=a+7(b—a)
Evaluate f(I) := f(z0)

repeat
Evaluate f(z)
if (f(r) < F(1))
Ap+1 ‘= l, bk+1 = bk, l:=r
7= Ty = A1 + T(bk+1 — Qrt1)
else

Ak+1 = Ak, bpt1 :=7, 7 :=1
l:=2p41 := ap1 + (1 — 7)(bry1 — art1)
k:=k+1
until (bk —ar < 6)

5.2 Minimizing functions of one variable 97

Table 5.3. Golden Section search for f(z) =z + zl—fl, [@0,bo] = [2,4.5], e =0.1

x5

ar by xk f(xk)
2.955 7.0005

2.000 4.500 3.545 7.0654
2.000 3.545 2.590 7.0468
2.590 3.545 3.180 7.0078
2.590 3.180 2.816 7.0089
2.816 3.180 3.041 7.0004
2.955 3.180 3.094 7.0022
2.955 3.094 3.008 7.0000
2.955 3.041 2.988 7.0000

0~ O UL WN K+~ O

5.2.4 Quadratic interpolation

The interval reduction techniques discussed so far only use information on
whether one function value is bigger or smaller than the other or the sign of
the derivative. The function value itself in an evaluation point or the value
of the derivative has not been used on the decision on how to reduce the
interval. Interpolation techniques decide on the location of the iterate zy
based on values in the former iterates.

a c Xk b

Fig. 5.2. Quadratic interpolation

The central idea of quadratic interpolation is to fit a parabola through the
end points a, b of the interval and an interior point ¢ and to base the next
iterate on its minimum. This works well if

f(e) <min{f(a), f(b)} (5-3)

and the points are not located on one line such that f(a) = f(b) = f(c). It
can be shown that the minimum of the corresponding parabola is

98 5 Nonlinear Programming Algorithms

Algorithm 13 Quadint([a, b], f,€)

Set k:=1,a1:=aand by :=b
ci=1xp = —(b;a)
Evaluate f(a1)7 f(C) = f($0)7 f(bl)
oy = LI@(E b)) +(e) (0% —a®)+f(b)(a® —c?)
L= 27 Fla) (e=b)+fle) (b—a)+F (b)(a—c)
while (| ¢ — z |> €)
Evaluate f(zy)
l:= min{xk, zr-1}, r := max{zy, Tp—1}
if (f(r) < f(1)
Ak41 = l, bk+1 = bk, C:=TrT
else

Ak+1 = Ak, bgt1 :=71, c:=1
k:=k+1
1 Flar)(=b2)+f()(bF —al)+£ () (ad—c?)
2 flag)(c—bg)+f(c)(bg—ak)+f(bg)(ar—c)

T =
endwhile

o L@@ =8 + J(O0* — a?) + [(b)(a® ~) (5.4)

2 fla)(c=b)+ flc)(b—a)+ f(b)(a—c)

For use in practice, the algorithm needs many safeguards that switch to
Golden Section points if condition (5.3) is not fulfilled. Brent’s method is
doing this in an efficient way, see Brent (1973). We give here only a basic
algorithm that works if the conditions are fulfilled.

Ezample 5.4. Quadratic interpolation is applied to approximate the minimum
of f(x) = = + ;—fl with starting interval [2,4.5] and accuracy ¢ = 0.001.
Although the iterate zj reaches a very good approximation of the minimum
point x* = 3 very soon, the proof of convergence is much slower. As can be
observed in Table 5.4, the shrinkage of the interval does not have a guaranteed
value and is relatively slow. For this reason, the stopping criterion of the
algorithm has been put on convergence of the iterate rather than on size of
the interval. This example illustrates why it is worthwhile to apply more

Table 5.4. Quadratic interpolation for f(z) = = + Il—fl, [0, bo] = [2,4.5], e = 0.001

x5

ag bk C Tr f(xk)
3.250 7.0147

2.000 4.500 3.250 3.184 7.0081
2.000 3.250 3.184 3.050 7.0006
2.000 3.184 3.050 3.028 7.0002
2.000 3.050 3.028 3.010 7.0000
2.000 3.028 3.010 3.005 7.0000
2.000 3.010 3.005 3.002 7.0000
2.000 3.005 3.002 3.001 7.0000

~N O Uk W~ O

5.2 Minimizing functions of one variable 99

complex schedules like that of Brent that guarantee a robust reduction to
prevent the algorithm to start ”slicing off” parts of the interval.

5.2.5 Cubic interpolation

Cubic interpolation has the same danger of lack of convergence of an enclosing
interval, but the theoretical convergence of the iterate is very fast. It has a
so-called quadratic convergence. The central idea is to use derivative informa-
tion in the end points of the interval. Together with the function values, z* is

Fig. 5.3. Cubic interpolation

approximated by the minimum of a cubic polynomial. Like in quadratic inter-
polation, a condition like (5.3) should be checked in order to guarantee that
the appropriate minimum locates in the interval [a,b]. For cubic interpolation
this is

f'(a) < 0and f'(b) > 0. (5.5)

Given the information f(a), f/'(a), f(b) and f’(b) in the end points of the
interval, the next iterate is given in equation (5.6) in the way that is common

in literature.

Fb)+o—u
f(b) = f'(a) + 2v
where u = f/(a) + f/'(b) — 3% and v = y/u? — f’(a)f'(b). The function

value and derivative are evaluated in xj and depending on the sign of the
derivative, the interval is reduced to the right or left. Similar to quadratic
interpolation, slow reduction of the interval may occur, but on the other hand
the iterate converges fast. Notice that the method requires more information,
as also the derivatives should be available. The algorithm is sketched without
taking safeguards into account with respect to the conditions, or the iterate
hitting a stationary point.

xp=b—(b—a) (5.6)

100 5 Nonlinear Programming Algorithms

Algorithm 14 Cubint([a,b], f, f', €)
Set k:=1,a1:=aand by :=b
Evaluate f(a1), f'(a1), f(b1), f'(b1)
wi= f'(a) + f'(b) = 3L9HLE o= \/u = f(a) (D)

R f(b)4v—u
zri=b= (b=) Fi

repeat
Evaluate f(zx), f'(xx)
if f'(zx) <O
k41 i= Tk, brg1 1= by
else
k41 = Ak, brt1 = Tk
k:=k+1
wi= f'(ar) + f'(br) — 3LBILLR) oy i S0 — f7(a) (1)
£ (bg)+v—u

o = b = (br = @) 70,5 2 72w
until (| zx — zr—1 [< €)

Ezample 5.5. Cubic interpolation is applied to find the minimum of f(z) =
x+ % with starting interval [2,4.5] and accuracy e = 0.01. One iteration
after reaching the stopping criterion has been given in Table 5.5. For this

case, also the interval converges very fast around the minimum point.

Table 5.5. Cubic interpolation for f(z) =« + xl—fl, [ao, bo] = [2,4.5], e = 0.01

k| an b wx f(zx) f(zk)
2.000 4.500 3.024 7.0001 0.012
2.000 3.024 2.997 7.0000 -0.001
2.997 3.024 3.000 7.0000 0.000
2.997 3.000 3.000 7.0000 0.000

=W N =

5.2.6 Method of Newton

In the former examples, the algorithms converge to the minimum point, where
the derivative has a value of zero, i.e. it is a stationary point. Methods that
look for a point with function value zero can be based on bisection, Brent
method, but also on the Newton-Raphson iterative formula: zpy1 = zp —
ff’((;ii))' If we replace the function f in this formula by its derivative f’, we
have a basic method for looking for a stationary point. We have already seen
in the elaboration in Chapter 4 that the method may converge to a minimum,
maximum or infliction point.

In order to converge to a minimum point, in principle the second order
derivative of an iterate should be positive, i.e. f”(zj) > 0. If we have a starting
interval, also safeguards should be included in the algorithm to prevent the

5.3 Algorithms not using derivative information 101

Algorithm 15 Newt(zo, f,€)

Set k:=0,

repeat
Tht1 1= Tk —]{//((:;z))
k=k+1

until (| zx — zk—1 |< €)

iterates to leave the interval. The basic shape of the method without any
safeguards is given in Algorithm 15.

Ezample 5.6. The method of Newton is used for the example function f(z) =
T+ % with starting point x¢y = 2 and accuracy € = 0.01. Theoretically the
method of Newton has the same convergence rate as Cubic interpolation. For

this specific example one can observe a similar speed of convergence.

Table 5.6. Newton for f(z) =z + Il—fl, x0 =2, €¢=0.01

k| an fxe) f(xk) £/ ()
2.000 7.3333 -0.778 1.185
2.656 7.0323 -0.197 0.655
2.957 7.0005 -0.022 0.516
2.999 7.0000 0.000 0.500
3.000 7.0000 0.000 0.500

= w N = O

5.3 Algorithms not using derivative information

In Section 5.2, we have seen that several methods use derivative information
and others do not. Let us consider methods for finding optima of functions of
several variables, f : R” — R. When derivative information is not available,
or one does not want to use it, there are several options to be considered. One
approach often used is to apply methods that use derivative information and
to approximate the derivative in each iteration numerically. Another option is
to base the search directions in Algorithm 9 on directions that are determined
by only using the values of the function evaluations. A last option is the use
of so-called direct search methods.

From this last class, we will describe the so-called Downhill Simplex
method due to Nelder and Mead (1965). It is popular due to its attrac-
tive geometric description and robustness and also its appearance in standard
software like MATLAB (www.mathworks.com) and the Numerical Recipes of
Press et al. (1992). It will be described in Section 5.3.1. Press et al. (1992)
also mention ”..Powell’s method is almost surely faster in all likely applica-
tions..”. The method of Powell is based on generating search directions built
on earlier directions like in Algorithm 9. It is described in Section 5.3.2.

102 5 Nonlinear Programming Algorithms

5.3.1 Method of Nelder and Mead

Like in evolutionary algorithms (see Davis (1991) and Section 7.5), the method
works with a set of points that is iteratively updated. The iterative set
P = {po,...,pn} is called a simplex, because it contains n 4+ 1 points in
an n-dimensional space. The term Simpler method used by Nelder and
Mead (1965), should not be confused with the Simplex method for Linear
Optimization. Therefore, it is also called Polytope method to distinguish.
The initial set of points can be based on a starting point xy by taking
Po = Xg,p; = xo + de;,i = 1,...,n, where 0 is a scaling factor and e; the
it" unit vector. The following ingredients are important in the algorithm and
define the trial points.

e The two worst points p(,,) = argmax,¢ p f(p), P(n—1) = argmax,c p\p,.., f(p)
in P and lowest point p(y = argmin,cp f(p) are identified.
e The centroid c of all but the highest point is used as building block

1
c=~> p (5.7)
i#(n)

Algorithm 16 NelderMead(xy, f,¢€)

Set k:=0, P:={po,...,pn} with po :=x0 and p; :=z0 +de; i =1,...,n
Evaluate f(p;)i=1,...,n
Determine points p(y), p(n—1) and p() in P
with corresponding values f(,), f(n—1) and f(o)
while (f(n) — f(()) > E)
ci=1 2 it(m) Pi
2" = c+ (¢ — p(y), evaluate f(z(")
if (fo) < f(27) < fin-1))
P:= P\ {pm}U{z"} 2™ replaces p(, in P
if (f(=) < f(o)
219 = c+ 1.5(c — p(ny), evaluate f(@®)
P := P\ {p(m} U {argmin{f(z(), f(z")}} best trial replaces p(,)
if (f(z7) > fu1)
2 = ¢4 0.5(c — P(ny), evaluate f(2©)
if (f(z'9) < f(@) < fiw)
P:= P\ {pm} U {29} replace p(,y by (¢
else
if (f(z\9) > f(z"))
P =P\ {pem}u{z"}
else
pi = %(p, +p0y),i=0,...,n full contraction
Evaluate f(p:;),i=1,...,n
P:={po,...,pn}

k:=k+1
endwhile

5.3 Algorithms not using derivative information 103

A trial point is based on reflection step: (") = c+ (c=p)), Figure 5.4(a).
When the former step is successful, a trial point is based on an expansion
step 2(¢) = ¢+ 1.5(c — P(n)), shown in Figure 5.4(c).

e In some cases a contraction trial point is generated as shown in Figure
54(b), :I:(C) =c+ 0.5(6 — p(n))

e [f the trials are not promising, the simplex is shrunk via a so-called multiple
contraction towards the point with lowest value p; := %(pz + py),i =

Porye----. ... x®

P
" . Pqy
(a) reflection Pay (b) contraction
e x(e)
RN
-
-
P
.
~ '
(c) expansion
' Pay

Fig. 5.4. Basic steps of the Nelder and Mead algorithm

In the description we fix the size of reflection, expansion and contraction.
Usually this depends on parameters with its value depending on the dimension
of the problem. A complete description is given in Algorithm 16.

Ezample 5.7. Consider the function f(z) = 223+ 23 —2z122+|21 — 3|+ |22 —2|.
Let the initial simplex be given by py = (1,2)7, p1 = (1,0)T and py =
(2,1)T. The first steps are depicted in Figure 5.5. We can see at part (a)
that first a reflection step is taken, the new point becomes p(;). However
at the next iteration, the reflection point satisfies neither condition f) <
fz™) < f(n—1) nor flz)) < f(0), thus the contraction point is calculated
(see Figure 5.5(b)). As it has a better function value than f(z("), p(, is
replaced by this point. We can also see that f(ac(c)) < f(n—1) as the ordering
changes in Figure 5.5(c). One can observe that when the optimum seems
to be inside the polytope, the size of it decreases leading towards fulfillment

104 5 Nonlinear Programming Algorithms

5 Po)
(r)
30
X c N
PGS S D) o\
\ ..
a2 \ Py
\
BN
Pay-. :
T T N
0 1 2 3 Vb
et : (c
(a) First iteration E7) N
N\
A
2 Po (\
©0) | Py
\ \
0 34 1 2 3
(b) Second iteration
1P
[Py
— \ I
0 34 1 2 3

(c) After second iteration

Fig. 5.5. Nelder and Mead method at work

of the termination condition. The FMINSEARCH algorithm in MATLAB is an
implementation of Nelder-Mead. From a starting point py = xg a first small
simplex is built. Running the algorithm with default parameter values and
zo = (1,0)7 requires 162 function evaluations before stopping criteria are met.
The evaluated sample points are depicted in Figure 5.6.

X2

Fig. 5.6. Points generated by NelderMead on f(x) = 2z% 4+ 23 — 2122 + |1 — 3| +
|x2 — 2|. FMINSEARCH with default parameter values.

5.3 Algorithms not using derivative information 105

5.3.2 Method of Powell

In this method, credited to Powell (1964), a set of directions (dy,...,d,) is
iteratively updated to approximate the direction pointing to x*. An initial
point xg is given, that will be named wgl). At each iteration k, n steps are
taken using the n directions. In each step, chi)l = xl(-k) + Ad;, where the
step size A is supposed to be optimal, i.e. A\ = argmin, f(:cgk) + pd;). The
direction set is initialized with the coordinate directions, i.e. (di,...,d,) =
(e1,...,en). In fact the first iteration works as the so-called Cyclic Coordinate
Method. However, in the method of Powell (see Algorithm 17) instead of
starting over with the same directions, they are updated as follows. Direction

Algorithm 17 Powell(x, f,€)

Set k:=0, (do,...,dn) := (eo,...,en), and xgl) 1= 2o
repeat
k=k+1
for (i=1,...,n) do
Determine step size A := argmin,, f(xl(-k) + ud;)
xl(-i)l = :z:ﬁ’” + Ad;
doe o) (k)

nt1 — L1
a:gkﬂ) = xﬁfjl + Ad where X := argmin,, f(xgbkll + pd)

dl‘ Z:di+1,i:1,...,n—1, dn =d
until (|f(z{") - f(2)] <)

d= gcg:)rl — xgk) is the overall direction in the kth iteration. Let the starting

point for the next iteration be in that direction: :cgkﬂ) = xﬁ[ﬁl + Ad with
optimal step size A\. The old directions are shifted, d; = d;1,i=1,...,n—1
and the last one is our approximation, d,, = d. The iterations continue with
the updated directions until |f(xgk+1)) — f(x(lk))\ <.

Ezample 5.8. Consider the function f(x) = 222 +23 -2z 29+ |71 — 3|+ |22 —2|
and let 2o = (0,0)7. The steps of the method of Powell are shown in Figure
5.7. Observe that points xgl),mgl),xgz) and xf),mgf),x?) lie on a common
line, that has the direction d of the corresponding iteration. In this example,
the optimum is found after only three iterations. Notice, that in each step an
exact line search is done in order to obtain the optimal step length .

In both the Polytope method and the method of Powell the direction of the
new step depends on the last n points. This is necessary to generate a descent
direction when only function values are known. In the next sections we will
see that derivative information gives easier access to descent directions.

106 5 Nonlinear Programming Algorithms

X2

PECE).QiKS):)%\{3):,—'

x, D,

Fig. 5.7. Example run of the Powell method

5.4 Algorithms using derivative information

When the function to be minimized is continuously differentiable, i.e. f : R™ —
R € O, methods using derivative information are likely to be more efficient.
Some methods may even use Hessean information if that is available. These
methods usually can be described by the general scheme of descent direction
methods introduced in Algorithm 9. There are two crucial points in these
algorithms: the choice of the descent direction and the size of the step to
take. The methods are usually named after the way the descent direction is
defined, and they have different versions and modifications depending on how
the step length is chosen.

The first method we discuss is the Steepest descent algorithm in Section
5.4.1, where, as its name tells, the steepest direction is chosen based on the
first-order Taylor expansion. As a second algorithm, the Newton method is
explained in Section 5.4.2. It is based on the second-order Taylor expansion
and uses second derivative information. These two methods are based on
local information only, i.e. the Taylor expansion of the function at the given
point. Conjugate gradient and Quasi-Newton methods also use information
from previous steps to improve the next direction. These advanced methods
are introduced in Section 5.4.3 and 5.4.4, respectively. Finally, we discuss the
consequence of using practical line search methods together with the concept
of trust region methods in Section 5.4.5.

5.4 Algorithms using derivative information 107
5.4.1 Steepest descent method

This method is quite historical in the sense that it was introduced in the
middle of the 19th century by Cauchy. The idea of the method is to decrease
the function value as much as possible in order to reach the minimum early.
Thus, the question is in which direction the function decreases most. The first
order Taylor expansion of f near point = in the direction r is

fla+7r) = f(x) + V()
So, we search for the direction

. V@) Tr
min ————,
reRr |7l
which is for the Euclidean norm the negative gradient, i.e. r = —V f(z) (see
Figure 5.8). That is why this method is also called gradient method.

X

VI (x)

Fig. 5.8. Steepest descent direction

In Figure 5.9 we can see an example run of the method, when the opti-
mal step length is taken for a quadratic function. Notice that the steps are
perpendicular. This is not a coincidence. When the step length is optimal at
the new point, the derivative is zero in the last direction. The new direction
can only be perpendicular. This is called the zigzag effect, and it makes the
convergence slow when the optimum is near.

Example 5.9. Let f(x) = (1 — 3)? + 3(x2 — 1) + 2 and 29 = (0,0)T. The
gradient is V f(z) = (2(x1 - 3)>, the steepest descent —V f(zg) = <6>

6($2 - 1) 6
We take as first search direction rg = (1,1)”. The optimum step size A can
be found by minimizing ., (1) = f(xo+uro) over p. For a quadratic function
we can consider finding the stationary point, such that

108 5 Nonlinear Programming Algorithms

X2

Xy

X2

X1

Fig. 5.9. Example run of Steepest descent method

&) = 1TV f(zo + Arg) = (1,1)7 (é& - i’%) —2(A—3)+6(A—1) = 0.

This gives the optimal step size of A = % The next iterate is 1 = (xo+Arg) =
(0,007 + 2(1,1)T = (1.5,1.5)T. Following the steepest descent process where
we keep the same length of the search vector leads to the iterates in Table
5.7. Notice that ||V fi|| is getting smaller, as xy, is converging to the minimum
point. Moreover, notice that rkTrk_l = 0.

Table 5.7. Steepest descent iterations, f(z) = (z1 —3)?+3(z2—1)*+2and 2o = 0

7vf13171 Tkal A 17{ f (k)
(0,0) 12

k

0

1 (6,6) (1,1) 2 (1.5,1.5) 5
2| (3-3) (1,-1) 3 (2.25,0.75) 2.75
3 3 (2.625,1.125) 2.1875

(1.5,1.5) (1,1)

In practical implementations, computing the optimal step length far away
from x* can be unnecessary and time consuming. Therefore, fast inexact line
search methods have been suggested to approximate the optimal step length.
We discuss these approaches in Section 5.4.5.

5.4.2 Newton method

We have already seen the Newton method in the univariate case in Section
5.2.6. For multivariate optimization the generalization is straightforward:

5.4 Algorithms using derivative information 109

Thtl = Tk — Hf_l(a:k)Vf(a:k)

But where does this formula come from? Let us approximate the function f
with its second-order Taylor expansion

Tx+r)=f(z)+ Vi) r+ %’I‘THf(.’L‘)’I“.

Finding the minimum of T'(x + r) in r can give us a new direction towards
z*. Having a positive definite Hessean Hy (see Section 3.3), the minimum is
the solution of VT'(z +r) = 0. Thus, we want to solve linear equation system

VI(z+r)=Vf(z)+ Hi(z)r=0

in 7. Its solution r = —Hf_l(:v)Vf(x) gives direction as well as step size.
The above construction ensures that for quadratic functions the optimum
(if it exists) is found in one step.

Ezxample 5.10. Consider the same minimization problem as in Example 5.9,
i.e. minimize f(z) = (z1 — 3)% + 3(22 — 1)? + 2 with starting point zq = 0.

Gradient Vf(z) = <§Ei1 B i’;) while the Hessean Hy(x) = ((2) g) Thus,
Y —

w1 = xo — H; 'V f(xo) = (8) — <1(/)2 1%) (:g) = G’) At z; the

gradient is zero, the Hessean is positive definite, thus we have reached the
optimum.

5.4.3 Conjugate gradient method

This class of methods can be viewed as a modification of the steepest descent
method, where in order to avoid the zigzagging effect, at each iteration the
direction is modified by a combination of the earlier directions:

T = =V i+ Brri—1. (5.8)

These corrections ensure that r1,79,...,r, are so-called conjugate directions.
This means that there exist a matrix A such that r] Ar; = 0, Vi # j. For
instance, the coordinate directions (the unit vectors) are conjugate. Just take
A as the unit matrix. The underlying idea is that A is the inverse of the
Hessean. One can derive that using exact line search the optimum is reached
in at most n steps for quadratic functions.

Having the direction 7, the next iterate is calculated in the usual way

Tyl = T + Arg

where A is the optimal step length argmin,, f (zk + pry), or its approximation.
The parameter [can be calculated using different formulas. Hestenes
and Stiefel (1952) suggested

110 5 Nonlinear Programming Algorithms

_ Vi (Vi = Vi)

Ok = . 5.9
Sy P 59
Later, Fletcher and Reeves (1964) examined
IV fiell®
- , 5.10
= VG (510
and lastly the formula of Polak and Ribiére (1969) is
Vi (V= Vi)
= 5.11
Bre 2 (5.11)
These formulas are based on the quadratic case where f(z) = 127 Az +

bTx + ¢ for a positive definite A. For this function, the aim is to have A-
conjugate directions, so r;fFAri, Vj # i. Plugging (5.8) into rf Ary_1 = 0
gives =V fL Ary._1 + Brri_ Arp—_1 = 0 such that

VL Arg_y
Pe= 7 5
T Arg_1
Now, having V f(z) = Az +b gives Vf(z) = A(zp—1+Arg—1)+b =V fr_1+
AAr_q1 such that Vf, — Vfr_1 = Mrp_1. Thus,

_ Vi Arey V(= Vi)

i Arg_q (Ve = Vie-1)

Br

This is exactly the formula of Hestenes and Stiefel. In fact, for the quadratic
case all three formulas are equal, and the optimum is found in at most n steps.

Example 5.11. Consider the instance of Example 5.9 with f(z) = (21 — 3)? +
3(xg —1)2 4+ 2 and 2 = (0,0)”. In the first iteration, we follow the steepest

descent, such that V f(xg) = (_6) gives our choice ro = (1,1)7, A = 2 and

_6 2

z1 = (1.5,1.5)T. Now we follow the conjugate direction given by (5.8) and
Fletcher-Reeves (5.10). Given that Vf(x1) = (=3,3)T, ||V f(z0)||?> = 72 and
|V f(z1)||* = 18, the next direction is determined by

IV f1]? 3\ 18 /6 45
= —V = —v = —_ = .
1 Ji+ Biro fi+ ||Vfo||2TO _3 + 72\ 6 15
This direction points directly to the minimum point z* = (3,1)7, see Figure
5.10. Notice that ry and r; are conjugate with respect to the Hessean H of f:

20 4.5
ré Hry = (1,1) (06> (_15> =0.

5.4 Algorithms using derivative information 111

X2

X1

Fig. 5.10. Example run of Conjugate gradient method

5.4.4 Quasi-Newton method

The name tells us that these methods work similarly as the Newton method.
The main idea is to approximate the Hessean matrix instead of computing
it at every iteration. Recall that the Newton method computes the search
direction as

T = —Hp(zp) "'V f(zp),

where Hy(xy) should be positive definite. In order to avoid problems with
non-positive definite or non-invertible Hessean matrices and in addition to
save Hessean evaluation, quasi-Newton methods approximate Hy(xy) by By
using an updating formula By41 = By + Uk.

The updating should be such that at each step the new curvature infor-
mation is built in the approximated Hessean. Using the second order Taylor
expansion of function f,

T(on +1) Jlan) + V)7 + 5rHy(air

one can obtain that
Vf(xr+7r)~ VT (xy+71)=Vf(xr) + He(zg)r.
Taking r = ry and denoting yr, = V f(zx4+1) — Vf(xy) gives
Y ~ Hy(zg)rs. (5.12)

Equation (5.12) gives the so-called quasi-Newton condition, that is yr = Bgri
must hold for every By and each search direction rp, = xpy1 — x we take.
Apart from (5.12), we also require By to be positive definite and symmetric,
although that is not necessary.

112 5 Nonlinear Programming Algorithms

For a rank one update, that is By11 = By + aguiul (ur € R™), the above
requirements define the update:

1

- _ o T
(yk—BkT'k)TTk(yk Birse) (v = Beri)” (5.13)

Bii1 =B+

This is called the symmetric rank one formula (SR1).

In general, after updating the approximate Hessean matrix, its inverse
should be computed to obtain the direction. Fortunately, using the Sherman-
Morrison formula we can directly update the inverse matrix. For SR1 formula
(5.13), denoting My, = By "

1

Myp =My +—
r g (e — Myyr) T yr

(re — Myy) (ri. — Myyi) ™

Two popular rank two update formulas deserve to be mentioned. The
general form for rank two formulas is By, = By + akukuf + ﬂkvkvg. One of
them is the Davidon-Fletcher-Powell formula (DFP), that determines By
or M1 as

(yr — Brri) (yr — Brrw)” B Byriri B rFBiriyryl

Byi1 = By +
YTk YL (yIre)?
T T
e Mipyry M
M1 = My, + - . 5.14
ylrk yl Myys, (5.14)

Later, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method was discov-
ered by Broyden, Fletcher, Goldfarb, and Shanno independently of each other
around 1970. Nowadays mostly this update formula is used. The updating
formulas are

kYt Brreri B

Byy1 = By + -
ykTrk r{Bkrk

(re = Myye) (re — Myye)™ Miysyi My yg Myyerrf,
Yi Tk YiTE (Vi i)

M1 = My +

FEzample 5.12. We now elaborate the DFP method based on the instance of
Example 5.9 with f(x) = (x1 — 3)? + 3(z2 — 1)?> + 2 and z¢ = (0,0)T. In the
first iteration, we follow the steepest descent. V f(zg) = :(63 and exact line
search gives 1 = (1.5,1.5)7. In terms of the quasi-Newton concept, direction
ro = 1 —x0 = (1.5,1.5)7 and yo = Vfi — Vfo = (3,9)7. Now we can
determine all ingredients to compute the updated matrix of (5.14). Keeping
in mind that My is the unit matrix, such that Myyo = o,

9/11 13
rorg = 1 (1 1) , Moyoyd Mo 29(39) .6 yo = 18 and yJ Moyo = 90.

5.4 Algorithms using derivative information 113

The updated multiplication matrix M; is now determined by (5.14).

A= (10 +; 11 1 /13\ _ 1 /41-7
= \o1 s\11 10\39) 40\-7 9/

Notice that M; fulfills the (inverse) quasi-Newton condition rg = Miyo. Now
we can determine the search direction

e = 5 (A7) () =2(2)

This is the same direction of search as found by the conjugate direction method
in Example 5.11 and points to the minimum point z* = (3,1)7. Further
determination of M, is more cumbersome by hand, although easy with a
matrix manipulation program. One can verify that M, = H;l as should be
the case for quadratic functions.

5.4.5 Inexact line search

In almost all descent direction methods, a line search is done in each step.
So far we have only used the optimal step length, which means that exact
line search was supposed. We have already seen that for quadratic functions
the optimal step length is easy to compute. Otherwise a one dimensional
optimization method (see Section 5.2) can be used. When we are still far away
from the minimum, computing a very good approximation of the optimal step
length is not efficient usually. But how to know that we are still far away from
the optimum and that an approximation is good enough? Of course there is no
exact answer to these questions, but some rules can be applied. For instance
we suspect that ||V f(x)|| — 0 as ¢ — z*. To avoid a too big or too small
step, a sufficient decrease in objective is required. For a small 0 < a < 1

o+ (1= AV FIr, < flog + Arg) (5.15)
f(xk +)\Tk) < fk + Ck)\Vngk (516)

must hold. Denoting ¢, (A) = f(xr+Ary) we can write (5.15)-(5.16) together
as

or, (0) + (1 =), (0)A < @, (A) < o1, (0) + gy, (0)A.

(5.15)-(5.16) is called the Goldstein condition. Inequality (5.16) alone is called
the Armijo condition. The idea is depicted in Figure 5.11. Inequality (5.15)
tells that A has to be greater than a lower bound A. The Armijo condition
(5.16) gives an upper bound X on the step size. We can have more disconnected
intervals for A, and (5.15) may exclude the optimal solution, as it does exclude
a local optimum in Figure 5.11.

To avoid this exclusion, one can use the Wolfe condition. That condition
says that the derivative in the new point has to be smaller than in the old
point; for a parameter 0 < o < 1

114 5 Nonlinear Programming Algorithms

A
Pn,

9, (0)+og, (0)A

¢, (0)+(1=)/, (A

§f |-
T > A
0 A
Fig. 5.11. Goldstein condition
¢, (N) <oy, (0), (5.17)

or alternatively
Vf(.’bk +)\Tk)TTk < UVf(xk)Trk.

The Wolfe condition (5.17) together with the Armijo condition (5.16) is called
the Wolfe conditions. In the illustration, (5.16) and (5.17) mean that step size
A must belong to one of the intervals shown in Figure 5.12.

The good news about these conditions is that the used line search can be
very rough. If the step length fulfills these conditions, then convergence can
be proved.

In practice, usually a backtracking line search is done until the chosen
conditions are fulfilled. The concept of backtracking line search is very easy.
Given a (possibly large) initial step length \g, decrease it proportionally with
a factor 0 < 3 < 1 until the chosen condition is fulfilled (see Algorithm 18).

Algorithm 18 BacktrackLineSearch(Ag, ¢y, , 5)

k=1

while (conditions not fulfilled)
/\k = BAk—l
k=k+1

endwhile

5.4 Algorithms using derivative information 115

9, (0)+ag, (0L

.09, (0)
9, 0)
F > A

(=)
122 e
|>

S
ey
N

Fig. 5.12. Wolfe conditions

5.4.6 Trust Region Methods

Trust region methods have a different concept than general descent methods.
The idea is, first to decide the step size, and then to optimize for the best
direction. The step size defines the radius A of the trust region, where the
approximate function (usually the second order Taylor expansion) is trusted to
behave similarly as the original function. Within radius A (or maximum step
size) the best direction is calculated according to the approximate function
my(x), i.e.

min my(xg + 1), (5.18)

lIrll<a

where usually
1
mp(zp +7) = fag) + V(e r + §rTHf(:Ek)r.

To control that we are doing well, is checked whether the trust radius is
adequate. Hence, the predicted reduction my(zx) — mg(zr + rr) and the
actual reduction f(xg) — f(xr +71) are compared. For a given parameter p if

<Pk _ flaw) = flaze + i) > - (5.19)

m(xr) — me(or +11)

holds, the trust region and the step are accepted. Otherwise the radius is
reduced and the direction is optimized again, see Figure 5.13. When the
prediction works very well, we can increase the trust region. Given a second
parameter v > p, if

116 5 Nonlinear Programming Algorithms

Fig. 5.13. For different trust radius different directions are optimal.

Pr >V,

the trust radius is increased by some factor up to its maximum value A. The
general method is given in Algorithm 19. In the algorithm the factors 1/2,2
for decreasing and increasing the trust radius are fixed. However, other values
can be used.

The approximate function my(x) can be minimized by various meth-
ods. As in the case of line search, we do not necessarily need the exact
optimal solution. An easy method is to minimize the linear approximation,
minj < a{f(zr) + Vf(zr)"r}. Its solution is the steepest descent direction,

Algorithm 19 TrustRegion(A, f, my, zo, i, V)

k=1 A=A
while (termination condition does not fulfill)
Tk 1= argmin . <A Mmk(Tk + 1)

if (v < pr)
A = max{2A, A}
else
while (pr < p)
A:=A/2
Tk 1= argmin . <A Mk (K + 1)
endwhile
Th41 =T + Tk
k=k+1

endwhile

5.4 Algorithms using derivative information 117

r = =V f(xg)/|IVf(zk)||, where one only has to minimize the step length
bounded to be less than the trust radius. The optimal step size can be given di-
rectly. Consider 7, = Ar, where ||r|| = 1 is normalized. When 77 H ¢ (z))r <0,
my (x4 Ar) is concave (or linear), descending in the direction of 7. So the opti-
mal step size is A. If it is convex, the minimum is taken either at the stationary

point, where W =V f(x)r + MTHp(zp)r =0, (A = M)’ or

rTHy(xp)r
at the maximum step size A, when the stationary point is outside;
A if TTHf(.Z'k)T <0,
A= min IV £ ()l , A, otherwise. (5.20)
T’THf (Ik>

Notice, that in this case the method is following a steepest descent method
with a bounded line search. Consequently, the convergence near the optima
is similar to that of the steepest descent method.

Ezample 5.13. Consider the problem in Example 5.9 with f(z) = (21 —)
3(z2 — 1) + 2 and 29 = (0,0)". The initial trust radius is taken Ay =
and the maximum trust radius A = 2. The first direction is (1,1)T as in
Example 5.9. Now the step length is A = 1 according to (5.20). This gives
as next iterate r; = (75 f) The function to minimize is quadratic, so the
predicted reduction is the same as the actual one. For formula (5.19) this
means that V k prp, = 1 and so A = 2. In the rest of the steps the trust radius
is always greater than the optimal step size. The iterates follow the steepest
descent algorithm from this point. The run is depicted in Figure 5.14.

X2

X

/

Fig. 5.14. Trust region method on the function f(z) = (z1 — 3)% + 3(x2 — 1)% + 2
with zo = (0,0)” and Ay = 1.

Other approaches to solve (5.18) are the Dogleg method using Newton
direction and the Steihaug’s approach with Levenberg-Marquardt idea. Also

118 5 Nonlinear Programming Algorithms

the Conjugate gradient method has a Trust region version. For details see e.g.
Kelley (1999) and Nocedal and Wright (2006).

5.5 Algorithms for nonlinear regression

The least squares problem of minimizing f(3) = Y .-, (2(x;, 3) —y;)? as intro-
duced in Section 2.7 has specific characteristics. Therefore, specific optimiza-
tion methods have been developed to minimize f(8). An important special
case is that of linear regression, where z is linear in 3. For the ease of notation
we will describe the linear regression case as z(z,3) = 2T 3 and elaborate the
minimization of its least squares around an example in Section 5.5.1.

The methods are based on the shape of the gradient and Hessean of f([3).
A useful concept is that of the so-called Jacobian being the m x n matrix of
partial derivatives with elements

8 [z
Jij(B) = z((;;ﬂﬂ)

(). (5.21)
The partial derivatives of f are %f—[gf)(ﬁ) =25>", %ﬁf]m(ﬁ)(z(x“ﬁ) — ;).
With the aid of the Jacobian and the error vector e(3) with elements e; =
z(x,) — y; they can be summarized as

VI(B) =277 (B)e(B). (5.22)

The Hessean of f obtains a more sophisticated shape
Hp(B) = 2J7(8)J(8) +2) Hi(B)ei(B), (5.23)
i=1

where H;(/3) is now the Hessean of the error e;(3) of the i*" observation. The
specific shape of gradient and Hessean gives rise to dedicated methods for
optimizing f that are described in the following subsections.

5.5.1 Linear regression methods

The optimization of the sum of absolute values f(3) = > |#18 — y;| or the
infinite norm (maximum error) f(8) = max; |z] 3 — y;| can be written as
Linear Programming. The least squares criterion leads to the minimization of
a quadratic function. Let us first of all remark that the Jacobian is a constant
matrix X which does not depend on the parameter values in 3. This makes
that we can write the least squares criterion in linear regression as

fB) = (XB-y) " (XB—y)=p"X"XB-2y"XB+y"y, (5.24)

5.5 Algorithms for nonlinear regression 119

which is a quadratic function in 8. If the columns of X are linearly dependent,
the minimum points can be found on a lower dimensional plane. If they are
independent the minimum point is the stationary point of (5.24)

6= (XTXx)"1xTy (5.25)
if we follow equation (3.21). Notice that the same follows from finding a
stationary point; Vf(3) = 2XT (X3 —y) = 0. The Hessean 2X T X is positive
semi-definite and its inverse has an important interpretation in statistics where
the so-called variance-covariance matrix of the estimated §* is proportional
to (XTX)™!, see Bates and Watts (1988). The ellipsoidal level sets f(3) —

f(B*) = (B—-p)TXTX(B — B*) < 6 have the interpretation of confidence
regions in statistics.

12
>TlO
g - *k
E g

0 T T T T T

0 1 2 3 4 5
stage —

Fig. 5.15. Observations and estimated model of mass as function of stage

Ezample 5.14. We want to explain the mass y of a plant from its growth stage
with a simple linear model y = 81 + (astage. The observed data points of
stage 0 to 5 are given by y = (1,2,4,7,9,10)7. The X matrix is given by

wo(triirny’
~\o12345)

rv [615 r (33
XX = (1555) and X7y = (117)'
Following (5.25) gives the least squares estimate
g (615 “h/033\ (057
~\ 1555 117) \1.97)"

The corresponding model is y = z(stage, *) = 0.57 + 1.97stage. Data points
and model are illustrated in Figure 5.15.

such that

120 5 Nonlinear Programming Algorithms
5.5.2 Gauss-Newton and Levenberg-Marquardt

The method of Newton for least squares functions is given by

Brir = By — 2H; I T (Br)e(Br), (5.26)

where H; is defined by the complicated expression (5.23). As it would be
complicated to evaluate all Hesseans H; in (5.23), one can use approximations
with the idea that either z is linear in (8 or the idea that the error terms e;
are small.

The concept of the Gauss-Newton method is to approximate H by the first
part 2J7(8x)J(Br). Alternatively, one can say that the model z is linearized
around (k. The resulting search direction of Gauss-Newton is

i =—(JT(Be) I (Br)) "I (Br)e(Br), (5.27)

which is a descent direction as J7J is a positive semi-definite matrix. It can
be shown that for many instances, taking the final step sizes as 1 leads to
convergence.

Ezxample 5.15. A researcher investigates the effect of dosing two nutrients on
the yield of tomatoes. Therefore he performs 4 experiments in separated fields.
The resulting data are given in Table 5.8. The expected relation is

yield = (1 + Brdoser)(1 + Padoses), (5.28)

where ;1 and (2 are reaction parameters. The least squares function to be
optimized is f(3) = Z%((l + Brdoser;)(1 + Badoses;) — yield;)?. The result-
ing Jacobian has rows (dosey;(1 + fadoses;), doses;(1 4+ frdosey;)). Consider

Table 5.8. Observed yield of tomatoes and nutrient dosage

experiment‘ 1 1 3 4
dose 1{1.0 1.0 1.0 2.0
dose 2{0.0 1.0 2.0 0.0

yield|0.5 5.0 6.5 1.0

starting vector By = (1,1)7, with sum of squared errors f(f;) = 19.5. The
error vector itself is e(3y) = (1.5, —1,—0.5,2)T and the Jacobian

T
1232 18 16
Jo = (o) = <024o) a“dJOTJ‘):(1620>’

such that the resulting steepest descent direction is

= =10 = -2 G)e() = T3)

5.6 Algorithms for constrained optimization 121

The Gauss-Newton direction is determined by

(1816 2\ _ (-1
"= 71620 —4) =\ 1)
This is a descent direction, as it makes a sharp angle with —V f(5).

One of the most used algorithms is due to Levenberg-Marquardt, which
has been implemented in most statistical software, Marquardt (1963). The
basic iteration scheme is based on

Bit1 = B — (JT(Bk)J(Br) + axE) " I (Br)e(Br), (5.29)

where FE is the unit matrix and «j implicitly determines the step size. For «
big, the methods follows the steepest descent. For smaller «, it looks more
like the Gauss-Newton method. Usually a scheme is followed where the size
of ay, is reduced during the iterations.

5.6 Algorithms for constrained optimization

We write the generic NLP problem now as

min f(z)
st.gi(x) <0i=1,...,p, inequality constraints, (5.30)
gi(x)=0i=p+1,...,m, equality constraints.

Until now we have ignored the presence of the constraints g and searched for
the optimum in the whole space. When dealing with constraints, there are
two main options to take. One is to convert the problem into unconstrained
problem(s) by embedding the constraints in the objective function, or directly
restricting the search to the feasible area. In the first case, the new uncon-
strained problems are not equivalent to the original problem, but using some
parameters, their solutions tend to the solution of the constrained problem.
In this way the previously discussed methods can be used to solve these new
problems. In this type of methods, the question is how to embed the con-
straints in the objective. We will discuss the Penalty and Barrier function
method in Section 5.6.1.

In the other case, directly restricting the search to the feasible area, we
usually modify an unconstrained method. Starting from a feasible point, the
direction and step length of the original method is modified such that the new
point is also feasible. Such methods are the Gradient projection method and
Sequential quadratic programming discussed in Sections 5.6.2 and 5.6.3.

5.6.1 Penalty and Barrier function method

The penalty function method was introduced by Zangwill (1967) and also by
Pietrzykowski (1969). The main idea of the method is to penalize infeasibility.
The penalty functions

122 5 Nonlinear Programming Algorithms

pu(@) = p ZmaX{gi(x)»O}Jr Y lai@)

i=p+1

and

p m
2
pu(x) = p (max{g;(z),01)* + Y g7 (x)
i=1 i=p+1
are 0 when z is feasible, but take a positive value at infeasible points. Adding
the penalty function to the objective function, P,(z) = f(x) + p.(z), we get

an unconstrained problem for every value of u,
min P, (x). (5.31)

It means that the objective function of the converted unconstrained problem
has high values at infeasible areas. The minimizer of (5.31) approximates
the minimizer of (5.30) for a value of y that is high enough. However, it
is not known apriori how high p should be. The minimizer can be far from
feasibility even for a relatively high p value. Moreover, choosing a high value
for p can result into a so-called ill-conditioned problem. It means that the
penalty function has values much larger in order of magnitude than f(x).
Numerical methods can fail or give false results in such cases.

To resolve this problem, the penalty function method works as follows
(see Algorithm 20). Solve the penalized unconstrained problem min P, (z) for
a given value for p. If the minimizer z*(u) fulfills p,(z* (1)) < €, x*(p) is
accepted as an approximate solution. Otherwise the value of p is increased
and the penalized unconstrained problem solved until the above condition is
fulfilled. The minimization of the next unconstrained problem starts from the
last minimum, to reach the solution in fewer steps. Moreover, one prevents
ill-conditioning in the neighborhood of the optimization path.

Algorithm 20 PenaltyMethod(f, g, p, po, 3, €)
k=1
xr = argmin P, (z)
while (pu(zr) > €)

k=k+1

pr =0 pe—1

xy := argmin P, (x)
endwhile

Ezample 5.16. Consider the problem

min 5 —¢e*

st. z=1.

5.6 Algorithms for constrained optimization 123

The constraint defines minimum point z* = 1. Taking p,(z) = p(z —1)?, the
unconstrained problem is

min{5 — e* + p(x — 1)},

Setting g = 1 and 3 = 2, the objective function of the first four unconstrained
problems is depicted in Figure 5.16. The solution zj tends to 1 as g goes to
infinity.

5 f f f f
-1 0 1 2 3

4
Fig. 5.16. The functions P,(z) for p=1,2,4,8.

Ezample 5.17. The penalty function method is used to find the solution of

: 2 2
min i + x5

s.t. x1 + a9 = 2.

Using the quadratic penalty function, we minimize
Pu(xr,22) = of + a5 + p(ar + 2 — 2)%
The first order necessary conditions in minimum point *(u) are

OBy OB
(9.’131_ 8.1‘2_

Thus, 221 + p2(x1 + 2 — 2) = 0 and 229 + p2(z1 + 22 — 2) = 0, from which
T = Ty = In Table 5.9 we can see that xj; tends to the solution

0.

2u
2pu+1°
x* = (1,1) if the unconstrained problems are exactly solved using pg = 1 and

3= 4.

124 5 Nonlinear Programming Algorithms

Table 5.9. Steps by the penalty function method for Example 5.17.

k © Tk
0 1 (0.7500, 0.7500)
1 4 (0.8888, 0.8888)
2 16 (0.9696, 0.9696)
3 64 (0.9922, 0.9922)
4 ()
5 ()
6 ()

256 (0.9980, 0.9980
1024 (0.9995, 0.9995
4096 (0.9998, 0.9998

One can observe that the solution reached by the penalty function method
and all subsequent points are infeasible. Therefore in applications, where
feasibility is strictly required, penalty function methods cannot be used. In
such cases barrier function methods are more appropriate.

Barrier functions make a barrier at the constraints such that zj can only
be situated in the interior of the feasible area. If the minimizer of the original
problem is on the boundary of the feasible region, x; tends to the boundary
from the interior. It also means that the barrier function method works only
with inequality constraints (there is no interior for an equality constraint).
For instance the barrier functions

bu(x) = _MZ sz)

i=1

and

bu(e) = —u Y In(—gi(x))
i=1

give positive values for strictly feasible points and infinity when g;(z) = 0 for
some i. Note that the barrier function at infeasible points is not necessarily
defined. In contrast to the penalty function method we do have to take care
not to leave the feasible area while minimizing B, (z) = f(z) + b,(z). One
could think that in this way the problem did not become easier as we still
have the constraints to be taken into account. Although this latter is true,

Algorithm 21 BarrierMethod(f, g,b, 10, 5, €)

k:=1
x) = argmin, y By ()
while (b, (zx) > €)
k=k+1
= Bl
T := argmin ¢ y By (z)
endwhile

5.6 Algorithms for constrained optimization 125

for the new problems none of the constraints are active, so any unconstrained
method can be used with some safeguards.

In Algorithm 21 a general barrier function method is given. The algorithm
is mainly the same as the penalty function method except that here u tends
to zero in order to have B, (z) — f(x).

Ezample 5.18. Consider the barrier function method for a variant of the prob-
lem in Example 5.17,

: 2 2
min i + x5
s.t. x1 +x0 > 2.

Using the logarithmic barrier function, our new problem is to minimize
B, (x1,29) = 2 + 23 — pln(z1 + 22 — 2). The solution must satisfy the
first order optimality condition, that is,

0B 1 0 oB 1

= —p— = =2y —p——— =0.
o1 e Macl + a9 — 2 Oxo 2 le +x9—2

Solving these equations, we get that z*(u) = (3 + 2T+ 4, 5 + VI +R).
In Table 5.10 the run of the Barrier function method is given for py =1 and
0 = 2. We assume the exact optimum is found by the local optimizer.

Table 5.10. Steps by the Barrier function method for Example 5.18.

k I Tk

o] 1 (1.2071, 1.2071)
1| 0.5 (1.1123, 1.1123)
2| 0.25 (1.0590, 1.0590)
3| 0.125 (1.0303, 1.0303)
4| 0.0625 (1.0153, 1.0153)
5| 0.03125 (1.0077, 1.0077)
6| 0.015625 (1.0038, 1.0038)

For the barrier function method every subproblem is ill-conditioned, as B,,
is unbounded at the constraints. Hence, the logarithmic barrier function is
used generally, as it grows in a less dramatic way than % Because of the ill-
conditioning problem, the above methods are not prevalent. In the followings
we will discuss more practical methods.

5.6.2 Gradient projection method

This method is a modification of the steepest descent method (see Section
5.4.1) for constrained optimization. It was developed in the early 60’s by

126 5 Nonlinear Programming Algorithms

Rosen (1960, 1961) and later improved by Haug and Arora (1979). At every
step the new direction is modified in order to stay in the feasible region by
projecting the gradient to the active constraints. In Figure 5.17 the negative
gradient of the objective —V f(z), the constraint g(z) and its gradient Vg(z)
are depicted together with the projected direction r.

=4

Fig. 5.17. The projected gradient direction.

The projection is done by a projection matrix, that is, r = —PV f. Let M
be the Jacobian matrix of the active constraints; it consists of column vectors
Vg;(x) for these constraints for which g;(z) = 0. The projection matrix can

be computed as
P=I-MM"M)"*M",

But let see, how to get this formula. We know that for every active constraint
the direction r is perpendicular to its gradient, Vgl = 0, such that

MTr =0.

The steepest descent direction along the binding constraint can be obtained
by solving the problem

min rIVf
st. MTr =0, (5.32)
[Ir[]2 = 1.

That is, we are searching for the most negative direction, which has unit
length. Using the Lagrangean (see Section 3.5.1) of (5.32),

L(r,u,v) = 'V f + 77 Mu + vr''r,

where u € R",v € R,||r||2 = rTr, the necessary condition for optimality is

5.6 Algorithms for constrained optimization 127

Z—L:Vf—i—Mu—l—%r:O. (5.33)
.

Multiplying (5.33) by M7T and considering MTr = 0,
MTVF+ M Mu+20MTr = MYV + MTMu =0,

from which
u=—(MTM)"*MTVY.

Substituting in (5.33) gives the projected direction

r= —%(E —MMTM)TMT)VF.

The factor i can be omitted, as r stands for a direction. Remember, the
step length is determined by the line search. When » = 0 and u > 0 the
Kuhn-Tucker conditions are satisfied, thus we have found a KKT point. If
some Lagrangian multipliers are negative (u; < 0 for some ¢), that means we
may still find a decreasing direction by removing constraints with u; < 0. In
fact the negative multiplier means that the corresponding constraint is not
binding for the decreasing direction. Usually, first the constraint with the
most negative Lagrange multiplier is removed from the active constraints and
r is calculated again. If r # 0, a decreasing direction is found. Otherwise we
remove more constraints with negative Lagrange multipliers. If there is no
more u; < 0, but » = 0, we can stop. We have reached a point where the
Karush-Kuhn-Tucker conditions hold.

After finding a feasible direction r, we want to obtain the optimal step
length A = argmin - f (xg + pr), such that the new iterate fulfills the non-
binding constraints, i.e. g;(xr + Ar) < 0. In fact the constraint that be-
comes binding first along direction r determines the maximum step length
Amax- Opecifically for a linear constraint alTJ; —b; < 0, A should satisfy

i . .
al(x, + Ar) — b; <0, such that Apay < baaTm’“ over all linear constraints.

The main procedure is elaborated in Algoritlhm 22 for the case where only
linear constraints exist.

Ezxample 5.19. Consider the problem

min x? + a3,
st. a1+ a0 > 2,
—2x1 + 19 < 1,
T > %

Let xo be (0.5,2)7. The gradient is Vf(z) = (2x1,2z5)", so at xo we have
V f(zo) = (1, 4)T. We can see that the second and third constraint are active,

but not the first. Thus, M = <_§ _(1))7 (MTM)=t = (_; _§>, and we

128 5 Nonlinear Programming Algorithms

Algorithm 22 GradProj(f, g, o, €)

k:=0

do
ri=—(E—-MMT"M)*MT)Vf
while (r = 0)

wi=—(M"M)""MTVf
if (min; u; < 0)
Remove g; from the active constraints and recalculate r
else
return z; (a KKT point)
endwhile
A= argmin,, f(zx + pr)
if 3i gi(ze + A1) <0
Determine Amax

A:)\max
Th41 = Tk + AT
k=k+1

while(|zx — zx—1]| > €)

get P = (8 8) Hence, » = 0. Now, computing the Lagrangean coefficients
u = (—4,9), we can see that the second constraint (with coefficient —4) does
not bind the steepest descent direction, so that should not be considered in

the projection. Thus, M = (_2)), P = <8 ?) and r = (_2) We can

normalize to r = (0,—1)" and compute the optimal step length A\. One can
check that the minimum of f(zy + Ar) is 2, but the originally nonbinding
constraint, g; is not fulfilled with such a step. To satisfy g1 (xy + Ar) > 0, the
maximum step length 0.5 is taken, so z; = (0.5,1.5)7".

)T

Now the two binding constraints are g; and g3, while V f(z1) = (1,3)T.

Corresponding M = (:i _é) is nonsingular, P = 0 and » = 0. Checking

the Lagrangeans we get u = (3,—2)7, that means g3 does not have to be
considered in the projection. With the new M = (—1,—1)7 the projection
matrix P = % <_1 _1>, and so r = (1,—1)T. The optimal step length
A = argmin, f(zy + pr) = 0.5, with which zo = (1,1)7 satisfies all the
constraints. One can check that x5 is the optimizer (a KKT point) by having
P =0 and u > 0. The problem and the steps are depicted in Figure 5.18.

For nonlinear constraints an approximate maximum value of A can be cal-
culated using the linear approximations of the constraints. Another approach
is to use a desired reduction of the objective, like f(xg) — f(zrp4+1) = v f(xk).
Using this assumption we get directly the step length, see Haug and Arora
(1979).

5.6 Algorithms for constrained optimization 129

A

X2

Fig. 5.18. The steps for Example 5.19.

In case of nonlinear constraints, we also have to take care that the new
iterate is not violating the active constraints. As we are moving perpendicular
to the gradients of the constraints, we may need to do a restoration move to
get back to the feasible area as illustrated in Figure 5.19.

uoneIoysax

Fig. 5.19. The projected and the restoration move.

The idea of projecting the steepest descent can be generalized for other
descent direction methods. One simply has to change —V f to the desired
direction in Algorithm 22 to obtain the projected version of a descent direction
method.

In the next section we are going to discuss the sequential quadratic pro-
gramming which is also called the projected Lagrangean method.

130 5 Nonlinear Programming Algorithms

5.6.3 Sequential quadratic programming

To our knowledge SQP was first introduced in the Ph.D. thesis of Wilson
(1963), later modified by Han (1976) and Powell (1978). SQP can be viewed
as a modified Newton method for constrained optimization. Actually it is a
Newton method applied to the KKT conditions. As the name of the method
tells us, a sequence of quadratic programming problem is solved. That is, at
every iteration the quadratic approximation of the problem is solved, namely
the quadratic approximation of the Lagrangean function with the linear ap-
proximation of the constraints.
Let us start with equality constrained problems,

min f(z) (5.3)
st. g(xz)=0. '
The KKT conditions for (5.34) are
Vi(x)+uVg(z) = 0 (5.35)

glx) = 0.

Observe that the first KKT equation says the gradient (with respect to the
x—variables) of the Lagrangean should be zero , i.e. V,L(z,u) = 0. In Section
5.4.2, we discussed that the Newton method can be used to determine a
stationary point. To work with the same idea, we define V2L(z,u) as the
Hessean of the Lagrangean with respect to the z-variables. To solve (5.35),
the iterates are given by zyy11 = zp + r,ux+1 = ux + v, where r,v are the
solutions of

(i ™87) (0)--(CHey) o

Ezxample 5.20. Consider the problem

min (z; — 1)? + (22 — 3)?

st. xy =x3—1.

Our constraint is g(x) = —z1 + 25 — 1 = 0 and the Lagrangean is L(z,u) =
(z1 — 1)? + (w2 — 3)®2 + u(x; — 23 + 1). The gradients are V,L(z,u) =
(2(z1 — 1) 4+ u,2(z2 — 3) — 225u)” and Vg(z) = (—1,22,)7, and the Hessean
- (2 0
for L is ViL(z,u) = <0 9_ou |
Denoting by N the matrix of (5.36) and by rhs the right hand side vector,
2 0o -1 21 —z1) —u
we have N=| 0 2—2u 2z5 | and rhs = | 2(3 — x2) + 2x2u
—1 215 0 r1— a3+ 1

5.7 Summary and discussion points 131

Consider as starting point o = (0,0)” and starting value for the mul-
20 -1 4
tiplier ug = 2. This gives Ny = 06 0] and rhsy = 6 | giv-
-10 0 -1
ing a solution of (5.36) of (r*,v) = (1,1,—2), such that z; = (1,1)T and
20 -1 0
u; = 0. Following this process, N; = 02 2| and rhs; = 4
-1 2 0 -1

Now (r”,v) = (1,0,2), such that we reach the optimum point x5 = (2,1)
with uy = 2. This point fulfills the KKT conditions.

o\

Fig. 5.20. Iterates in Example 5.20

Figure 5.20 shows the constraint, contours and the iterates. Moreover,
a second process is depicted which starts from the same starting point xy =
(0,0)”, but takes for the multiplier ug = 0. One can verify that more iterations
are needed.

Applying the same idea to inequality constrained problems requires more
refinement; one has to take care of complementarity and the nonnegative sign
of the multipliers.

5.7 Summary and discussion points

e Nonlinear programming methods can use different information on the in-
stance to be solved; the fact that the function value is higher in different
points, the value of the function, the derivative or second derivative.

132 5 Nonlinear Programming Algorithms

e Interval methods based on bracketing, bisection and the golden section
rule lead to a linear convergence speed.

e Interpolation methods like quadratic and cubic interpolation and the
method of newton are usually faster, require information of increased order
and safeguards to force convergence for all possible instances.

e The method of Nelder-Mead and the Powell method can be used when
no derivative information is available and even when functions are not
differentiable. The latter method is usually more efficient, but we found
the first more in implementations.

e Many NLP methods use search directions and one-dimensional algorithms
to do line search to determine the step size.

e When (numerical) derivative information is used, the search direction can
be based on the steepest descent, conjugate gradient methods and quasi-
Newton methods.

e Nonlinear regression has specific methods that exploit the structure of the
problem, namely Gauss-Newton and Levenberg-Marquardt method.

e For constrained problems there are several approaches; using penalty ap-
proaches or dealing with the constraints in the generation of search di-
rections and step sizes. In the latter the iterative identification of active
(binding) constraints is a major task.

5.8 Exercises

1. Given f(x) = (22 — 4)?, starting point zop = 0 and accuracy € = 0.1.
(a) Generate with the bracketing algorithm an interval [a, b] which con-
tains a minimum point of f.
(b) Apply the golden section algorithm to reduce [a,b] to an interval
smaller in size than e which contains a minimum point.

2. Given Algorithm 23, function f(z) = 22 — 1.2z + 4 on interval [0,4] and
accuracy € = 1073,

Algorithm 23 Grid3([a,b], f,¢€)

Set k:=1,a1:=aand by :=D

zo := (a + b)/2, evaluate f(zo)

while (by, — ar > €)
l:=ar + %(bk - ak), r
evaluate f(I) and f(r)
o 1= argmin{ f(1), f(@x_1), f(r)}
Q41 = Tk — %(bk —ak), bey1 =k + %(bk — ag)
k=k+1

endwhile

= ak + 2(br — ax)

5.8 Exercises 133

(a) Perform 3 iterations of the algorithm.
(b) How many iterations are required to reach the final accuracy?
(¢) How many function evaluations does this imply?

3. Given Algorithm 24 for finding a minimum point of 2D function f : R? —
R, function f(z) = 223 + 23 + 2sin(x1 + z2) on interval [a,b] with a =
(=1,—1)7T and b = (1,0)T and accuracy ¢ = 1073.

Algorithm 24 2DBisect([a, b], f, €)
Set k:=0, a0:=aand by :=b
while (ku — ak|| > 6)
T = %(ak + bk)
Determine V f(xr)
if %(l‘k) < 0, Ak4+1,1 ‘= Tk,1 and bk+1,1 = bk,1

else ax4+1,1 := ak,1 and br41,1 1= Tp,1
if %(l‘k) < 0, Ak41,2 ‘= Tk,2 and bk+1,2 = bk,2
else ax41,2 := ak,2 and by41,2 1= T2
k=k+1

endwhile

(a) Perform 3 iterations of the algorithm. Draw the corresponding inter-
vals [ag, bx] which enclose the minimum point.

(b) Give an estimate of the minimum point.

(c) How many iterations are required to reach the final accuracy?

4. Given function f(z) = 22+4z 29 +22+€*1 and starting point zo = (0,1)7.
(a) Determine the steepest descent direction in xg.
(b) Determine the Newton direction in xq. Is this a descent direction?
(c) Is Hy(zo) positive definite?
(d) Determine the stationary points of f.

5. Given an NLP algorithm where the search directions are generated as fol-
lows, g := —V f(z0), the steepest descent and further ry, := — MV f(zr),
with My, =1+ 7‘1@717”5_1, where [is the unit matrix.

(a) Show that M}, is positive definite.
(b) Show that r coincides with the steepest descent direction if exact line
minimization is used to determine the step size.

6. Given quadratic function f(x) = 2? — 2z129 + 223 + —2x5 and starting
point zg = (0,0)T.
(a) Determine the steepest descent direction r¢ in xg.
(b) Determine the step size in direction rg by line minimization.
(¢) Given that My is the unit matrix, determine M; via the BFGS update.
(d) Determine corresponding BFGS direction = —M;V f(x1) and per-
form a line search in that direction.

134 5 Nonlinear Programming Algorithms

(e) Show in general that the quasi-Newton condition holds for BFGS, i.e.
Tk = M1y

7. Three observations are given, = (0,3,1)T and y = (1,16,4)T. One
assumes the relation between x and y to be

y = 2(z,) = fre™?. (5.37)

(a) Give estimation of 8 as minimization of the sum of (y; — z(x;, 3))%.
(b) Draw observations z;,y; and prediction z(x;, 3) for 8 = (1,1)%.
(¢) Determine the Jacobian J(/3).

(d) Determine the steepest descent direction in 8y = (1,0)7.

8. Using the infinite norm in nonlinear regression leads to a nondifferentiable
problem minimizing f(3) = max; |y; — z(x;, §)|. Algorithm 25 has been
designed to generate an estimation of § given data x;,y;,¢ = 1,...,m.
In the algorithm, J;(3) is row i of the Jacobian. Data on the length

Algorithm 25 Infregres(z,x,y, 0o, ¢€)

k=0
repeat
Determine f(0x) = max; |y; — z(xs, Br)|
direction r := 0
for (i=1,...,m) do
if (yi — 2(xi, Be) = f(Br))

ri=r+ Ji(B)
if (2(wi, Bk — yi) = f(Br))
r:=r— Ji(B)
A:=5
while (f(gk + Ark) > f(Br))
A= b
endwhile
Bk+1 = /Bk + Ark
k:=k+1

until (||Bx — Br—1|| > €)

x and weight y of 4 students is given; z = (1.80,1.70,1.60,1.75)7 and

y = (90,80, 60,70)T. The model to be estimated is y = 2(z, 8) = (1 + oz

and initial parameter values 3y = (0,50)7.

(a) Give an interpretation of the while-loop in Algorithm 25. Give an
alternative scheme for this loop.

(b) Draw in an z, y-graph the observations and the line y = z(z,).

(c¢) Give values 8 for which f(/) is not differentiable.

(d) Perform two iterations with Algorithm 25 and start vector (y. Draw
the obtained regression lines z(z, §;) in the graph made for point (b).

5.8 Exercises 135

(e) Give the formulation of an LP problem which solves the specific esti-
mation problem of ming f ().

9. In order to find a feasible solution of a set of inequalities g;(z) <0, =
1,...,m, one can use a penalty approach in minimizing f(z) = max; g;(x).

(a) Show with the definition that f is convex if g; is convex for all i.

(b) Given g1(x) = 22 — 3, g2(7) = 71 — 22 + 2. Draw the corresponding
feasible area in R2.

(¢) Give a point z for which f(z) is not differentiable.

(d) For the given set of inequalities, perform two iterations with Algorithm
26 and start vector zo = (1,0).

(e) Do you think Algorithm 26 always converges to a solution of the set
of inequalities if a feasible solution exists?

Algorithm 26 feas(zg,g;(x), i=1,...,m)

Set k := 0, determine f(xo) = max; g;(zo)
while (f(zx) > 0)
determine an index j € argmax; g;(xx)
search direction 7y := —Vg;(zx)
A=1
while (f(zr + Ari) > f(zx))
A= %
endwhile
Thtl = Tp + ATk
k:=k+1
endwhile

10. Linear Programming is a special case of NLP. Given problem

m)e(xxf(x) =x1+xze, X={x¢€]RZ\O <x1<4,0<29 <3} (5.38)

An NLP approach to solve LP is to maximize a so-called logbarrier func-
tion B, (x) where one studies ¢ — 0. In our case

B, (z) = z1 + 22 + p(In(xq) + In(z2) + In(4 — z1) + In(3 — x2)). (5.39)

Given points 7o = (4,1)T and z; = (1,1)T.
(a) Show that xy does not fulfill the KKT conditions of problem (5.38).
) Give a feasible ascent direction r in x.
) Is f(x) convex in direction 77
) For which values of z € R? is B, defined?
e) pu =1, Determine the steepest ascent direction in ;.
) =1, Determine the Newton direction in ;.
)
)

136

11.

12.

13.

5 Nonlinear Programming Algorithms

(i) Show that B, is concave on its domain.

Given optimization problem maxyx f(z) = (x; — 1) + (72 — 1)?, X =
{r € R}0 < 21 < 6,0 < 29 < 4} and 29 = (3,2)7. One can try to
obtain solutions by maximizing the so-called shifted logbarrier function
Gu(x) = f(z) + p >, In(—gi(x) + 1), which in this case is

Gu(z) = (21-1)*+(z2—1)*+pu(In(z1+1)+Hn(re+1)+Hn(7—21) +In(5—22)).

(a) For which values of z € R? is G,, defined?

(b) Determine the steepest ascent direction of G3(z) in xo.
(c) Determine the Newton direction of G3(z) in .

(d) For which values of p is G, concave around .

Find the minimum of NLP problem min f(z) = (213 — 3) + (2o —
2)2,91(1) = 22 —29 —3 <0, go(z) = 29 — 1 <093() =-x1 <0
with the projected gradient method starting in point zq = (0,0)7.

Find the minimum of NLP problem min f(z) = 23 4 23, g(x) = e(!=%1) —
x9 = 0 with the sequential quadratic programming approach, starting
values 7o = (1,0)7 and ug = 0.

6.1 Steepest Descent M ethod

As moativation consder the membrane problem with smal deformation and in a

Seady date so that the potentid energy in a minimum.

Potential Energy @T (Jl+ u; +u; - 1) dxdy - fuDxDy

= aurfacetenson + externa work , where
T =tendon,
u = deformation and

f isexternd pressure on the membrane.

Usef(p)© 1+ p @f(0) +f ' (O)p

p:O(p' O)=1+1/2p

Letp= (uf +uj) o that

‘/1+u§ +Uf - 1@%(u§ +u§)
I - AP 0 , — _
P(u) = E(UX +uy) - fuzdxdy isan goproximation of the total potentia energy.
W a

One can show the following are equivaent formulations:

1. Potentia Energy

P(u) = min P(v) wherev isin a"suitable’ set of functions, S.

2. Weak Form

@y (ui +uj,)- @fi =0, foral “sitable’ |

3. Classca Form
-T(uxx+uw) =f.
For example, to show a potential energy solution isaweak solution, use u+1j in
P(u) sothat f(A) = P(u+1j) isafunction of the real number A.. Because u minimizesthe

potentia energy, A = O will minimizef(A) so that f (0) = 0, which corresponds to the
week equation.
Congder Ax =dwhere A is SPD and isfrom the classicd form. Thelinear sysem

is related to the potentia energy form where

Jx) =% x" Ax- x"d , from Jx) comes from the potential energy

AlgebraicLemma. Jy) = Jx) + %(Y- X)"TAY- X)- (y- %) (%)

Proposition 1. If A is SPD, then 1 and 2 are equivaent
1. Ax =d,

2. JX) =min JXy).

Proof of Lemma.

Let y=x+(y - x).
Use A=A .

3(y) =I(x+y - X)
:%(H(y-)" A+ (y- X)) (x+(y- %) d

:%XTAX+%(y- x)TAx+%xTA(y- x)+%(y- X)) A(y- X)- x'd- (y- x)'d

= 39+ (y-)7 Ax- (y- x)Td+§(y- X)TA(Y- %)

=39~ (y- x)Tr(x)+§(y- X" Ay~ X).

Proof 1 implies2:
Ax=d meansr(x) =0.

Use the Algebraic Lemma, A being SPD and r(x) = 0to get

1) = X¥) +% (yX)TAQY-X) - 0% Xx).

Proof 2 implies1:

Wewant to show r(x) =0, that is, [r(x)]; = 0.
Thisisequivdent to showing [r(X)]i 3 Oand[r(X)]; £ O.
Sncey isahbitrary,

y =X+ (y - X) and choosey s0 that
y-x°le.

Jy) =Jx +l &), by the Algebraic Lemma

= X¥) +% (1 e)"A(&) -(l &)r()

= J%) +%I 2y - 1 [r(¥)]

0£ Jy)- Jx) =1 (%I ai -[rli)

SnceAisSPD, a; >0.

(8 Suppose[r(x)]i <0,

Letl - O.
So eventually (%I a -[(%)]}) >0,

Thisimplies Xy) - XX) <0, whichisa contradiction.
Therefore, we must have [r(x)]; 2 O.

(b) Suppose[r(x)]i >0,
Letl — 0. So eventudly(%l a; -[r(x)];) <0, and thisimplies

Jy) - XX) <0, which isacontradiction.

Then we must have [r(X)]; £ O.

Idea for Steepest Descent M ethod:

Letf(a) = JC+ ap), and p be somedirection. We want to choose a so that f(a)

the smallest possible. Thisisasmpler problem because f isafunction of asngle

variable. In order to choose the direction p so that the directiond derivative of XX) is

the largest possible, we will need the following results.

Proposition 2. 1. Cauchy Inequality.
X'yl £ IXIEllyll
2. Directiond Derivetive.

R wharedu=1 3 o jjm SJOHW- (X
du du t®0 t

3. Direction of Steepest Descent.

e, |;i| = IR | whenu© Rf /IR o
u

Proof of 1:
O£ f()° (x+1y)"(x+1y)
=xX'x +22X'y +ty'y , becausex Ty =y "x.
f't)=0 implies t; =-xTyN'y.
f () =2y'y>0, 0 f(ty) isthemin. of f(t).
0£f(t)=x"x +2(-x "y y)x y)+ (- x "Y'y)Yy 'Y)
=x"x- (x 'y YHy'y

Thisimplies (x 'y)* £ (x ")(y"y) =(IX]lz llyll)*.

Proof of 2:

im JOFW- 10 PO U) - OO0, u,)

t®0 t t®0 tu,

U

N f(x+t(O,u,,..,u,))- f(x+t(0,0,u,,...,u,))
tu,

N f(x+t(0,...,0,un)zl; fO(0,0..,0)

n

= xlu1+...+fxnu] :me

Proof of 3:
df ~ - -
IEI=INf><UI £ [INflXqull = [INf | 1

Because |Jul® = (Nf /|INF |)" (Nf /INF L) =1,
we may choose u = Nf /||Nf |.. Then for thisu

g_f: Rif > = Rif (R AINE) = [IRF [
u

Therefore, the largest possible |j—f| isgiven by thisu.
u

6.2 Steepest Descent Algorithmin Multiple Directions

Consider J0C + ap). Wewant to choose a and p o that thisis the smallest

possible. Thisisasmpler problem because a isasingle number, and p isadirection so

that J should decrease most rpidly.

Proposition 3. If A issymmetric, then the direction of steepest descent is
NJ = -r(x).

Pr oof.

[NJ], =ﬂl(} X' Ax- x'd)

__(_a X|a1] i~ a de)

‘ﬂxZ
1 1
— —xd
ﬁﬂxag,,a}ﬂx

1o
Ee}lanxj+ axail 1d., usea. =4

Proposition 4. If A'isSPD, then

J(Xx") =min_ J(x +ar)where
_r'r
rTAr

Proof. Lef(a) =Jx +ap) wherep = -r, and use the Algebraic Lemmarto get

fla)=Jx) +1/2a’p'Ap-ap'r.

Thenf'(a)=0=a p'Ap- p'r, and note p’ Ap > O for nonzero p.
Thusfor p=-rwehavea =-r'r/r'Arandx" =x + a(-r).

Or, X'=x+(@'r/r"ADT.

Steepest Descent Algorithm.
x° = initid guess
for m=0, maxm
fm=d-AX"
a=rm m /fm Aflm
X™=x"+a

test for convergence.

The next residud rm+1 may be computed using the previous residual:
ez =d-AX™ =d- AX" +ary) =d- AX" - aArn = - aArn .
Thus, each iteration of the stegpest descent agorithm requires one matrix-vector product,

two dotproducts and one vector update.

Consder the partia differentia equetion - Uy - Uy = f(X,y) where u must be equa
to zero on the boundary of the unit square. In the Matlab code observe the use of array
operations. The vectors are represented as 2D arrays, and the sparse matrix A is not
explicitly stored. The product Ar isstored inthe 2D array . Herethe partid differentia
equation has right Sde equd to 200 + 200sin(px)sn(py), and the solution is required to

be zero on the boundary of (0,1)x(0,1). The steepest descent method appears to be

converging, but after 200 iterations the norm of the residual is still only about 102, Inthe
next section the conjugate gradient method will be described. One caculation isincluded
here and shows that after only 26 iterations of the conjugate gradient method, the norm of
the residua isabout 10, It isinteresting to note if the right side is 200sin(px)sn(py),

then the steepest descent method will converge in one iteration....Why?

Matlab Steepest Descent Code (st.m)

cl ear;
n = 20;
h =1./n;
u(l:n+l1, 1: n+1) = 0. 0O;
r(1:n+1,1:n+1): . 0;
r(2:n,2:n)= 1000. *h*
for j= 2:n
for i = 2:n
r(i,j)= h*h*200*(1+sin(pi*(i-1)*h)*sin(pi*(j-1)*h));
end
end
q(1:
err
m= 0]
rho 0.0;
while ((err>.0001)*(n<200))
m = mtl;
ol drho = rho;
rho = sum(sum(r(2:n,2:n).22));
for j= 2:n
for i = 2:n
(i, j)=4.*r(i,j)-r(i-1,j)-r(i,j-1)-r(i+1,j)-r(i,j+1);
end
end
al pha = rho/sum(sum(r.*q));
u =u + al pha*r;
r = r - alpha*q;
err = max(max(abs(r(2:n,2:n))));
reserr(m = err;
end
m
sem | ogy(reserr)

h;

+

I Q n s

1
10

0
10 F —

10

L og(norm(r)) versus m for the Steepest Descent Method

1
10 T T T T T

0
10 | -
10 F =
-2
10 | -

-3
10 | =

10 1 1 1 1 1

L og(norm(r)) versusm for the Conjugate Gradient Method

Steepest Descent with Multiple Directions.

The steegpest descent method computes the smalest Xx) for each direction:
X =x%+a,r,
X =x+a,n =x"+af,+ajr, .
In order to obtain smdler vaues of Jx), we may minimize over larger dimensond sets
of functions given by multiple directions.
X =x°+¢l,
X? =x'+cyr, +¢r, (usetwo directions).
Next, co and ¢; now will be found so thet

min f(¢,c) where f(g,c)° J(X'+cr, +cyr,).
Co,C1

In generd, we consder m+1 directions

m+l _ m
X" = X"+ Gy +e-+C, T

m
f(c,;-c) IJ(X"+cf, +---+C.r
0 m 0°'0 m'm

Find c = (co,...,Cm) SOthat min f(c). Usethe vector notation so that

z

ol : ,
l'J n (mtl)(m+2)" m
A= X+ R C

Xm+1:Xm+[r0 rm] u
m

BOPY

Findcsotha f(c)=J(x™ +Rc) isaminimum.

Proposition 5. If A is SPD, and R has full column rank, then ¢ such that f(c) is

minmumisgivenby (R"AR)c=R'r_.

Proof. Agan usethe Algebraic Lemmato obtain
(%) = (%) +§<Rcf ARS) - (RO,
Define

3(9)° SR ACRD)- (RY'™,

=Lohc- R,
2
where A° RTAR is SPD and d ° R'r,.

A° RTAR is SPD because A is SPD and R has full column rank. Use the
equivaence, given by Propostion 1, of the minimum of j(c) and the solution of

Ac=d.

One difficulty with this is that as m gets large more computations must be done to
find R'TAR = [r; TA 1] and then to solve (RTAR) ¢ = R'ry. If the residuds were
orthogona with respect to the inner product given by A, then the matrix R AR would be
diagond. The conjugate gradient method uses a verson of the Gram-Schmidt process to

ensure thisisthe case.

6.3 Conjugate Gradient Method

In order to smplify the solution of (RTAR)c = Ry, we will apply the Gram:
Schmidt process to the resduals and use the inner product given by the SPD matrix, A.

Thiswill convert the matrix (R" AR) into adiagona matrix.

Two directionsm = 1;

Po ° To

p, °n +bp
Choose b sothat (p,,p,), =0
(n +bp)'Ap, =0

r, Ap, + bp, Ap, =0
'rlTApo

T

, Where the p," Ap, > 0 because A is SPD.
Po AP,

So,b =

X2 = Xl + COpO + Clpl

= X'+ G+ G+ bpy)
=x" + Cf, +Cf,
Choose ¢, and ¢, so that
Jx* +c,p, +c,p,) isaminimum.
Thistrueif and only if
P'APc =P'r, where

P = [p, p,] and
&, t
Or,
& AR, Po Ap U g, _ ép, 'l
€ . T uée g - ¢ . u
&, Ap, P, Ap, g €&l ep, g

Proposition 6. Let A be SPD.
If @. po=ro
(b). pr=r1+bopowherebg=-r1" Apo/po’ Apo,
(©. x'=x2+agrowhereag=ro ro/ro’ Arg
then
1. p1' Apo =0,
2. Po' 11 =0, and hence, ¢ =0,

3. pi'ri=riry, andhence, ¢ = r/p: Apr = a1 ad
4. Bo = I’]_T r/ roT lo.
Overdl,p1 =11+ Bopo and>? =x* + a1 pu.

Proof of 1. By definitionof b.

Proof of 2.

L= r(x,) = d-Ax,
d-A(x,+a.p,)
(d-AX,) -aAp,

=1, - a,Ap,
Poh = Po (Fe@ AP
=1, r,-ap, Ap,
= 0.

Proof of 3.
plTrl = (rl + bO pO)T rl
= rlT r1 + bO pg rl

=r'r, +b, 0.

Proof of 4.
r'r =(r,-aAr) (r, -aAr)

= rTr, + (Oro O)Z(Aro) (Ar,)

rf Ar, = (1, - aAr)" A,

s
=r, Ar, - 00(Ar)(Ar)
0 0 (;l'Ar 0

0

Usethreedirections m=2;

x> =x* +¢,p,+ C,p,+ C,P,

pO © r0

p,°r,+byp,

p2 © r2 + blpl

Choose b, sothat (p,, p,), =0
(r, +b,p,)'Ap, =0

-, Apl

b, =
P'Ap,

min J(x* +c,p,+ cp, +C,p,) if and only if PTAPc =Pr,.

Or,

ép.' A 0 TAp, U 4 n ép.'r, U

“Po A, Po Apz, e u SPp I

¢ T Ue g e . u

e 0 pAy 0 ULy = epnd
u

é - é a
8 P; AR 0 pz Ap, & H épzT 29
Fortunately, we can show
P T, =P, =0and p, Ap, = p; Ap, =0so that
x* =x?+0p,+ 0p,+c,p, where
c, = p2T r2 — r2T r2
2T T T
P, AP, B AR

=a,.

Proposition 7. LetAbeSPDandm=2.
If (a). Letp,, x*, p, be defined asin Proposition 6.
(b). p,=r,+bp

— 'rzT Apl
P Ap,

b,

(). x*=x"+a,p

a. = rlTrl
1 T]
P, Ap,
then
1. pOT r, = 0
2. plT r, = 0
3 plT Ap2 =0
4. poTApz =0
T T ror
5. p,r,=r,r, andhencec,= pZTZA:) 2 =a,
T
6_ b1 — r2-|- r.2)
r.l r.l

Overdl,p, =r,+b,p, andx® = x* +a,p,.

Proof of 1.

r,=t-GAp
poT r2 :roT (rl 'ClApl)
=1, 5-al, Ap, .5 Ag =0
r0T (ro 'Q) Aro)
0.

Conjugate Gradient Method.

™ =x"+ap. (a represents the steepest descent formula.)

P, =r..+bp. (b repesentsthe "conjugate" direction (p,.., P,). = 0)
min J(x™?) if and only if PTAPc=P'r_

€p, Ap, 0 O 0

U éc,u ¢ 0 0
é . u é.q é -
g 0 .00 ggig .6 oq
€ 0 o . 0O Ueé:a é 0 u
e ua g é u
A T , L
@ O 0 O pm Apmg gzma @pmrmg

Preconditioned Conjugate Gradient Algorithm (M =1 is Conjugate Gradient).

choose X,
solve Mr, =1, and p, =T,
for m=0,maxm

~T

r.r

a,=—7r— (steepest descent)
Pn AL,
Xm+l = Xm + am pm

ey =T - @, A0,
test for convergence

solve Mf .. =r_.. (preconditioning)
~ T
b — rm+1 r‘m+:L
m AT
rm rm

Pt =Fry T, P (conjugatedirection)

6.4 Preconditioned Conjugate Gradient

max|| |
min|| |

Error for the CG isafunction of the condition number of A, k,(A) =

The fastest convergence of the CG method occurswhen k ,(A) » 1. Preconditioning can
Be viewed as finding an equivalent AX =d such that
K,(A)- 1<K, (A)- 1
There are three equivalent descriptions of the CG scheme:
1. J(X™) =min. J(X" +¢r, +..oa+ C 1)
wherer; areresidud directions,
2. J(x™)=min, J(X"+c,p, +......+C_P,)
where p; are conjugate directions, and
3. J(x™) =min. J(X°+c,r, +CAr,.....+C,AT)

where A'ry are Krylov directions.
Proposition 8. If A isSPD, then 1,2 and 3 are equivaent.

Pr oof.
l« 2, seeforma proof on Stoer and Bulrich.

2« 3,seeKdley.

Connection among 1,2,3:

Let p be the conjugate directions as defined in the conjugate gradient agorithm.

pOO r.0

X'=x°+a,p,

[=Ty~ a,Ap,

P =1 +bop,

x? :X1+a1p1
=x'+a,(;+b,p,)
=x'+a,(r,+b,r) ,residual directions
= XO +a0r0 +al(r0- a'O'Apo + boro)

=X’ +c,r,+cAr, ,Krylov directions.

Proposition 9. If AisSPD, then

m+1

™ x” é\/_ - 1_

where Ax =d, k, =k ,(A) and|x],” =

-
A

“Qutline of proof”
Use the Algebraic Lemma
J(X™Y - J(X) =21/2(x™ - x)T A(X™ - X)
:1/2||xm*1- x||A2.

X= XM =X (X ¢, Fonns c,A™,)
=X- X°- (G, e G,A™)
=x- xX°- (¢l +gA+......... G, A")r.

r,=d - Ax°
= Ax- Ax°
= A(X- X°%)

Ko X=X - G+ A G AT, A - X

=(I- (¢l +cA+......... G, A")A)(X° - X)

S0, by the Algebraic Lemma

2(3(x™) - I =[x K| * £ o, (A x- x)|,* where

0.(2)=1- (G z+ ...+, 2™).

To obtain an error estimate choose a"good"” polynomia gy (2).

Form of Preconditioner.

A=M- N

M is SPD

M?1=5'S

Ax=d

M-*Ax=M'd

S'SAx=S'd

SAS (STY=5H

(SAST)(S TX) = d

Let A= AST
X=STx

X,

(@Y
11

Apply CGto Ak=d and usethe definiion M ' = S'S to get the PCG .

Examples.
1. M =diagonal part of A
or
= block diagona part of A
2. M = incomplete Cholesky factorization

3. M = incomplete domain decomposition

4. M for symmetric SOR splitting as follows:

Let w=1.

A=D- L- L

(D- L)x™"?=d+L"x" Forward SOR

(D- LN)x™ =d+ Lx™"? Backward SOR

=d+L(D- L)*(d+L"x™)

X™ = (D- L") [d+L({D- L) d+L x™)]
=(D-L")Y'd+(D- L")'L(D-)*d+(D- ') *L(D- L)L x"
=Mtd+M NX"

Mi=(D-LU)'+(D- U)L(D- L)*?

=(D- L)' [(D-L)+L](D- L)*
=(D-L")y'D(D- L)

Solve Mr=r
(D-L)D'D-L)F=r.

Forw?!1l

M= - wi) EED - WLy,

Matlab Preconditioned Conjugate Gradient with SSOR (cgssor.m)

cl ear;

%

% Solves -uxx -uyy = 200+200sin(pi x)sin(pi y) with zero BCs
% Uses PCG with SSOR preconditioner

% Uses 2D arrays for the colum vectors

% Does not explicity store the matrix

%

w = 1.5;
n = 20;
h =1./n;

u(1l:n+1,1: n+l

)= 0.0;
r(l:n+l1,1:n+1)= 0.0;

rhat (1: n+l1, 1: n+1) = 0.0;
% Define right side of PDE

for j= 2:n
for i = 2:n
r(i,j)= h*h*(200+200*si n(pi*(i-1)*h)*sin(pi*(j-1)*h));
end
end

p(1l:n+l1, 1: n+l
g(1:n+1,1: n+l
err = 1.0;
m = 0;
rho = 0.0;
% Begin PCGiterations
while ((err>.0001)*(nm<200))
m = mtl;
ol drho = rho;
% Execute SSOR preconditioner

)= 0.0;
)= 0.0

for j= 2:n
for i = 2:n
rhat (i,j)=w(r(i,j)+rhat(i-1,j)+rhat(i,j-1))/4.;
end
end

rhat(2:n,2:n) = ((2.-wW)/wW*(4.)*rhat(2:n,2:n);

for j=n:-1:2
for i =n:-1:2

rhat(i,j)=w(rhat(i,j)+rhat(i+1,j)+rhat(i,j+1))/4.;

end

end

% Find conjugate direction
rho = sum(sum(r(2:n,2:n).*rhat(2:n,2:n)));

if (me=1)
p = rhat;
el se
p = rhat + (rho/ol drho)*p;
end
%
% Use the following line for steepest descent nethod
% p=r;
%

% Executes the matrix product g = Ap without storage of A
for j= 2:n

for i = 2:n

)=4.%p(i,j)-p(i-1,§)-p(i,j-1)-p(i+1,j)-p(i,j+1);

end
% Executes the steepest descent segnent
al pha = rho/ sum(sum(p. *q));
u = u + al pha*p;
r = r - alpha*q;
% Test for convergence via the infinity normof the residua

err = max(max(abs(r(ZIn,Zi n))))'
reserr(m = err;

end
m
sem | ogy(reserr)

Log(norm(r)) versusm for PCG with SSOR

11

6.5 Generalized Minimum Residual

If A isnot SPD, then the PCG will not be applicable becauseit is based on the
equivaent minimization of JX). Two dternatives, amoung others, are
1. replace Ax = d with the normal equations ATAx = A'd,
2. replace minimization of Jx) with the minimization of
r(x)"r(x) wherer(x) = d - Ax.
The norma equation gpproach can be computationdly expensive or ill-conditioned. In order to
meake the minimization of the resdua less computationdly less expensive, the minimizaion is

done over an m dimensiona subspace.

m-1 .
Definition. K, ={x|x= g a,A'r,} iscdled aKrylov space. The A'r,are called
0

Krylov vectors. A dight abuse of notation isto form amatrix, dso written asK,,, as

Km = [ro Aro Am-lro].

Definition. Thegeneralized residual method isgiven by

m-1

S
X"=x"+ g a,A'r, where

0

r(X™Tr(x™ = minr(x) 'r(x) withx T x° + K.
If after m steps the method is restarted with XC replaced by X™, then it is

caled the GM RES(m) method.

The main benefit of usng the Krylov subspacesis that
AK, iscontained in K,

Thisis very useful in the solution of the minimization, which is rdaed to finding the least squares

solution of

AGC + B a, Ar) = d
0

AK a =r,.

In order to efficiently solve this least squares problem, we will congtruct an orthonormal
basis, one column vector per iteration, of Ky,. Let Vi, =[v; ... Vin] besuch abasis. Since
AK, iscontained in K., €ch column in AV, should be alinear combination of columnsin
V1.

Avi =v; hyy + v, by where, by the orthonormal basis property,
vi'Avy = hyy and Vo' Av; = hyy.
AV, =v; hyp + Vo hpy + v3 hg, Where, by the orthonormal basis property,

V1TAV2 = by, V2TAV2 = hy and V3TAV2 = hap.

The matrix form of thisis

(i:'hll h, u

a

[Ay, Av, —]=[v, v, v, ---]%hél Ei 3
80 0 g

AV, =V . H.
A isnxn, Vy, isnxm, and H isand (m+1)xm Hessenberg matrix. The QR factorization of
Hessenberg matrices are easy to compute via the Givens transformation.
Thefirgt column in Vy,, will be the normdized ro

fo=b v, wherew,"v; = 1 so that b = (1" ro) 2
Hence, rpisthe first column of Vi, times b, thet is,

fo=Vm+16 bwheree, =[10.....]".
Then the least squares problem can be written as

AKna =rg or

AVm a. = Vm+le_‘|_ b.

Propostion 10. The least squares solution of AK i, a = rq isgiven by the least squares

solution of Ha = e bwhere b = (1, '10)*? and AV, = Vi H.

Pr oof. AVna =Vhae b

Vm+]_H a. =

The least squares solution means R(a)"R(a) isaminimum where

R@)=Vme1b-VnaHa .

Since V41 is orthonormal,
R@)" R@) = (V1€ b - ViniH @) (Vines€1 b - VinuaH a)
=(erb- Ha)" Vine1 Vi1 (61 b - Ha)
=(e.b-Ha)" (e b- Ha).

So, thisisthe least squares solution of Ha = e, b.

In order to find the least squares solution, we must solve the norma equations viathe
QR factorsof H. Let H = QR s0 that the norma equation becomes
H'Ha =H" e b
Ra= Q" enb.
The Givens transformation can be used to construct the QR factorization of H. Moreover, the
basis and Hessenberg matrix can be congtructed one column per iteration. The following
implementation solve the Poisson problem where the matrix product step is a sparse matrix

product, and the unknowns are listed in a 2D space grid array.

Matlab Code GMRES2d.m

% gnres nethod for Poi sson equation
% see C. T. Kelley's text

% see Matlab file gnres. m

cl ear;

% | nput data.

nx = 20;

ny = nx;

errtol =.0001;

kmax = 30;

% Initial guess.
x0(1l:nx+1, 1: ny+1) = 0.0;

x = x0;

h = zeros(knmax) ;

v = zeros(nx+1, ny+1, knmax) ;

¢ = zeros(kmax+1, 1);

s = zeros(kmax+1, 1);

b(1l:nx+1, 1: ny+1) = 200./(nx*nx);

r = b;

rho = sum(sun(r(2:nx,2:ny).*r(2:nx,2:ny)))".5;

g = rho*eye(kmax+1, 1);

errtol = errtol *rho;
v(2:nx,2:ny,1) =r(2:nx,2:ny)/rho;
k = 0;

% Begin gnres | oop
while((rho > errtol) & (k < kmax))
k = k+1;
% Matrix vector product.
v(2:nx,2:ny, k+1l) = -v(1l:nx-1,2:ny, k)-v(3:nx+1, 2: ny, k) -
v(2:nx,1:ny-1,k)-v(2: nx, 3:ny+1, k) +4. *v(2: nx, 2: ny, k) ;
% Begin nodified GS. May need to reorthogonalize
for j=1:k
h(j,k) = sum(sum(v(2:nx,2:ny,j).*v(2:nx,2:ny, k+1)));
v(2:nx,2:ny,k+1l) = v(2:nx,2:ny,k+1)-h(j,k)*v(2:nx,2:ny,j);
end
h(k+1, k) = sum(sun(v(2:nx,2:ny, k+1).*v(2:nx, 2: ny, k+1)))".5;
if(h(k+1,k) ~= 0)
v(2:nx,2:ny, k+1) = v(2:nx,2:ny, k+1)/h(k+1, k);

end
% Apply old Gvens rotations to h(1:k,k).
if k>1
for i=1:k-1
hi k = c(i)*h(i,k)-s(i)*h(i+1, k)
hi pk = s(i)*h(i,k)+c(i)*h(i+1,Kk);
h(i, k) = hik;
h(i +1, k) = hipk;
end
end

nu = norm(h(k: k+1, k));
% May need better G vens inplenmentation
% Define and Apply new G vens rotations to h(k:k+1, k).
if nu~=0
c(k) h(k, k) / nu;
s(k) = -h(k+1, k)/nu;
h(k, k) = c(k)*h(k, k)-s(k)*h(k+1, k) ;
h(k+1, k) = 0;

gk = c(k)*g(k) -s(k)*g(k+1l);
gkp = s(k)*g(k) +c(k)*g(k+1);
g(k) = gk;

g(k+1) = gkp;

end

rho=abs(g(k+1));
mag(k) = rho;
end
% End of gnres |oop.
% h(1l:k,1:k) is upper triangular matrix in QR
y=h(1l:k, 1: k)\g(1:Kk);
% Form linear comnbination.
for i=1:k
X(2:nx,2:ny) = x(2:nx,2:ny) + v(2:nx,2:ny,i)*y(i);
end
sem | ogy(mag)
% mesh(x)

10

10 |

10 |

10 L

10 L L !)

Constrained Optimization using Matlab's fmincon

A. Basic Calls (without any special options)
Examplel Example 2

B. Calls with Gradients Supplied
Matlab's HELP DESCRIPTION

For constrained minimization of an objective function f(x) (for maximization use -f), Matlab provides the
command fmincon. The objective function must be coded in a function file in the same manner as for
fminunc. In these notes this file will be called objfun and saved as objfun.m 1in the working directory.

A: Basic calls top
Without any extra options, fmincon is called as follows:

- with linear inequality constraints Ax£b only (as in 1inprog):
[x,fval]=fmincon ('objfun',x0,A,Db)

- with linear inequality constraints and linear equality constraints Aeq-x=beq only:
[x,fval]=fmincon ('ocbjfun',x0,A,b,Aeq,beq)

- with linear inequality and equality constraints, and in addition a lower bound of the form x>Ib only:
[x,fval]=fmincon('ocbjfun',x0,A,b,Aeq,beq, 1b)

If only a subset of the variables has a lower bound, the components of Ib corresponding to variables
without lower bound are -1nf. For example, if the variables are (x,y), and x>1 but y has no lower bound,
then 1b=[1;-Inf].

- with linear inequality and equality constraints and lower as well as an upper bound of the form x
fub only:

[x,fval]=fmincon('objfun',x0,A,b,Aeq, beqg, 1b, ub)

If only a subset of the variables has an upper bound, the components of ub corresponding to variables
without upper bound are 1nf. For example, if the variables are (x,y) and x£1 but y has no lower bound,
then 1b=[1;Inf].

- with linear inequality and equality constraints, lower and upper bounds, and nonlinear inequality
and equality constraints:

[x,fval]=fmincon('objfun',x0,A,b,Aeq,beqg,lb,ub, 'constraint"')

The last input argument in this call is the name of a function file (denoted constraint in these notes and
saved as constraint.m in the working directory), in which the nonlinear constraints are coded.

Constraint function file:

constraint.m 1s a function file (any name can be chosen) in which both the inequality functions c(x)
and the equality constraints ceq(x) are coded and provided in the form of column vectors. The function
call

[c,ceq]=constraint(x)

must retrieve ¢(X) and ceq(x) for given input vector x. Examples of constraint function files are given in
Examples 1 and 2 below. If only inequality constraints are given, define ceq=1]. Likewise, if only
equality constraints are given, define c=1].

Interpretation:

http://kstio.com/nm/optimization/constrained.html#A:%20Basic
http://kstio.com/nm/optimization/constrained.html#Example%201
http://kstio.com/nm/optimization/constrained.html#Example%202
http://kstio.com/nm/optimization/constrained.html#B:%20gradient%20call
http://kstio.com/nm/optimization/constrained.html#Matlab%27s%20HELP
http://kstio.com/nm/optimization/constrained.html#top
http://kstio.com/nm/optimization/constrained.html#Example%201
http://kstio.com/nm/optimization/constrained.html#Example%202

The retrieved ceq(x) is interpreted by fmincon as equality constraint ceq(x)=0. The inequalities associated
with ¢(x) are interpreted as ¢(x)£0. Thus, if a constraint of the form c(x)%0 is given, rewrite this as -c(x)£0
and code -c(x) in the constraint function file.

Placeholders:

As shown above, the constraints have to passed to fmincon in the following order:

I. Linear inequality constraints

2. Linear equality constraints

3. Lower bounds

4. Upper bounds

5. Nonlinear constraints

If a certain constraint is required, all other constraints appearing before it have to be inputted as well, even
if they are not required in the problem. If this is the case, their input argument is replaced by the
placeholder [] (empty input).

Examples:
- If Ib and (A b) are given, but there are no other constraints, the syntax is:
[x,fval]=fmincon('objfun',x0,A,b, [],[],1lb)

- If ub and (Aeq,beq) are the only constraints:
[x,fval]=fmincon('objfun',x0,[],[],Aeq,beq, [],ub)

- If only nonlinear constraints are given:
[x,fval]=fmincon('objfun',x0, (1, [1,[1,[1,[]1,[],"'constraint")
and function file constraint.m must be provided.

Example 1: top

Find the minimum of

f(x,y)=x4—X2+y2—2X+y

subject to
linear inequalities |linear equalities [lower bounds [upper bounds [nonlinear constraints

(a) -- -- x>0 y£0 -

(b) -- x+y=0 -- x£1, y£10 --

(c) x+y£0 -- -- -- x2+y2£1

(d) -- - -- - X2+y2=1

(e) -- -- -- -- x2+y2=1 , X2-y23 1
() - - -- -- x2+y2£1, x2-y?31

Solution: The objective function is coded as for unconstrained minimization:
function f=objfun (x)
f=x (1) "4-x (1) "2+x(2) "2-2*x (1) +x(2) ;

For (a), (b) we don't need a constraint function file. The calls are (assuming x0=[valuel;value2] is
already defined):

(a): [x,fvall=fmincon('objfun',x0,[1,[],
(b): [x,fvall=fmincon ('objfun',x0, (1, (],

1,01,00;-Inf], [Inf;0])
1,11,0,01,11;107])

http://kstio.com/nm/optimization/constrained.html#top

For (c)-(f) we need a constraint function file. In each case the first line of the file constraint.m 1is:

function

[c,ceqg]=constraint (x)

followed by an empty line. The commands below the 2nd line are:

()

(d)

(e)

()

ceq

c=x (1) "2+x(2)"2-1;
=[]7

c=[];

ceg=x (1) "2+x(2)"2-1;

c=1-x(1)"2+x(2)"2;
ceg=x (1) "2+x(2)"2-1;

cl=x(1)"2+x(2)"2-1;
c2=1-x(1)"2+x(2)"2;
c=[cl;c2];ceqg=[];

For example, for (f) the full constraint function file is:

function

cl=x(1l)"2+x(2)"2-1;

c2=1-x(1)"2+x(2)"2;
c=[cl;c2];ceqg=[];

Function calls for (c)-(f):

(c):

[c,ceg]=constraint (x)

[x, fval]=fmincon ('objfun',x0,[1,1]1,0,[]1,1[]1,I[],[],' 'constraint')

(d)-(f): [x,fvall=fmincon('objfun',x0,[],[1,[1,[1,[1,[], "constraint")

Approximate solutions found by fmincon:

Example 2:

subject to

x0 X % fval
(a) [1;-1] |1.00000006131380(-0.50000014164875(-2.2499999999999%¢6
(b) [1;-1] 10.90852417219345(-0.90852417219345|-2.04426066047301
(C) [0;0] 0.70710678118746(-0.707100781187406|-1.87132034356109
(d) [1;0] 0.92894844437517|-0.37020912075712|-2.20932198927909
(e)|[.5;.1]|1.00000000003278 |-0.00000810106872 |-2.00000810100310
(f) [[-17.1]{1.00000000000009|0.00000001792512 [-1.99999998207488
top
Minimize and maximize the objective function
f(x,y,z)=x3+y3+z3
x30, zf£0, X2+y2+Z2=1, y23222.

Objective function file:

For Minimization:

function f=objfun (x)

f=x(1)"3+x(2)"3+x(3) "3;

For Maximization:

function f=objfun (x)

f=x (1) "3+x(2) "3+x(3) " 3; £=-£;

http://kstio.com/nm/optimization/constrained.html#top

Constraint function file:
function [c,ceqg]=constraint (x)

Cc=2*x(3)"2-x(2)"2;
ceg=x (1) "2+x(2) "2+x(3)"2-1;

Function calls (in command window) and answers:

Minimization:

>> x0=[0;1;2];

>> [x,fval]=fmincon('ocbjfun',x0,[],[],[]1,[],[0;-Inf;-Inf], [Inf;Inf;0], " 'constraint')

Warning: Large-scale (trust region) method does not currently solve this type of
problem,
switching to medium-scale (line search).
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213
Optimization terminated successfully:
Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon

Active Constraints:

1
3
x =
0.92898366078939
-0.37012154351899
0
fval =

-2.20932218190572

Answer for Maximization (same call, only objective function file was changed):
Warning: Large-scale (trust region) method does not currently solve this type of

problem,
switching to medium-scale (line search).
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213
Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

Active Constraints:

1

% =
0
1
0
fval =
-1

B: Call of fmincon with gradient information provided top

As for fminunc the performance of fmincon can be improved if gradient information is supplied. This
information can be provided for the objective function, the nonlinear constraint functions, or both. Let's
consider Example 1(f) again. The objective function file is extended as:

function [f,gradf]=objfun (x)

f=x(1)"M-x(1)"2+x(2) "2-2*x (1) +x(2) ;

http://kstio.com/nm/optimization/constrained.html#top

gradf=[4*x (1) "3-2*x(1)-2;2*x(2)+1];
For providing the gradients of the nonlinear constraints, the constraint function file is extended as:

function [c,ceq,gradc,gradceg]=constraint (x)

cl=x(1l)"2+x(2)"2-1;
c2=1-x(1)"2+x(2)"2;

c=[cl;c2];ceqg=[1];
gradc=[2*x(1),-2*x(1);2*x(2) ,2*x(2)];
gradceqg=[];

Note that the the first column of gradc is the gradient-vector of the first constraint, and the second column
of gradc is the gradient vector of the second constraint.

As in the unconstrained case we have to set the gradient option. We want to supply the gradient of the
objective function as well as the nonlinear constraints. The follwoing command sets this option:

>> options = optimset ('GradObj','on', 'GradConstr', 'on');

In the function call these options are passed to fmincon as input argument after the name of the constraint
file:

>> x0=[.1;.1]; [x,fval]l]=fmincon('objfun',x0,[],[1,[],[1,[],[],'constraint',options)

Warning: Large-scale (trust region) method does not currently solve this type of
problem,
switching to medium-scale (line search).
> In C:\MATLABR12\toolbox\optim\fmincon.m at line 213
Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon
Active Constraints:
1
2
x =
1.00000000000000
-0.00000171875724
fval =
-2.00000171875428

Matlab's HELP DESCRIPTION top

FMINCON Finds the constrained minimum of a function of several variables.
FMINCON solves problems of the form:
min F (X) subject to: A*X <= B, Aeg*X = Beqg (linear constraints)

X C(X) <= 0, Ceg(X) =20 (nonlinear constraints)
ILB <= X <= UB

X=FMINCON (FUN, X0,A,B) starts at X0 and finds a minimum X to the function
FUN, subject to the linear inequalities A*X <= B. FUN accepts input X and

returns a scalar function value F evaluated at X. X0 may be a scalar,
vector, or matrix.

http://kstio.com/nm/optimization/constrained.html#top

X=FMINCON (FUN, X0,A,B,Aeq,Beq) minimizes FUN subject to the linear equalities
Aeg*X = Beq as well as A*X <= B. (Set A=[] and B=[] if no inequalities exist.)

X=FMINCON (FUN, X0,A,B,Aeq,Beq,LB,UB) defines a set of lower and upper
bounds on the design variables, X, so that the solution is in
the range LB <= X <= UB. Use empty matrices for LB and UB

if no bounds exist. Set LB(1i) = -Inf if X (i) is unbounded below;
set UB(1) = Inf if X(i) is unbounded above.

X=FMINCON (FUN, X0, A, B, Aeq,Beq, LB, UB, NONLCON) subjects the minimization to the
constraints defined in NONLCON. The function NONLCON accepts X and returns
the vectors C and Ceq, representing the nonlinear inequalities and equalities

respectively. FMINCON minimizes FUN such that C(X)<=0 and Ceg(X)=0.
(Set LB=[] and/or UB=[] if no bounds exist.)

X=FMINCON (FUN, X0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS) minimizes with the

default optimization parameters replaced by values in the structure OPTIONS,

an argument created with the OPTIMSET function. See OPTIMSET for details. Used
options are Display, TolX, TolFun, TolCon, DerivativeCheck, Diagnostics, GradObj,
GradConstr, Hessian, MaxFunEvals, MaxIter, DiffMinChange and DiffMaxChange,
LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG, TypicalX, Hessian, HessMult,
HessPattern. Use the GradObj option to specify that FUN also returns a second
output argument G that is the partial derivatives of the function df/dX, at the

point X. Use the Hessian option to specify that FUN also returns a third output
argument H that is the 2nd partial derivatives of the function (the Hessian) at the

point X. The Hessian is only used by the large-scale method, not the
line-search method. Use the GradConstr option to specify that NONLCON also
returns third and fourth output arguments GC and GCeqg, where GC is the partial
derivatives of the constraint vector of inequalities C, and GCeqg is the partial

derivatives of the constraint vector of equalities Ceqg. Use OPTIONS = [] as a
place holder if no options are set.

X=FMINCON (FUN, X0,A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS, P1,P2,...) passes the
problem-dependent parameters P1,P2,... directly to the functions FUN
and NONLCON: feval (FUN, X,P1,P2,...) and feval (NONLCON,X,P1l,P2,...). Pass

empty matrices for A, B, Aeqg, Beqg, OPTIONS, LB, UB, and NONLCON to use the
default wvalues.

[X, FVAL]=FMINCON (FUN, X0, ...) returns the value of the objective
function FUN at the solution X.

[X, FVAL, EXITFLAG]=FMINCON (FUN, X0, ...) returns a string EXITFLAG that
describes the exit condition of FMINCON.
If EXITFLAG is:

> 0 then FMINCON converged to a solution X.

0 then the maximum number of function evaluations was reached.
< 0 then FMINCON did not converge to a solution.

[X, FVAL, EXITFLAG, OUTPUT]=FMINCON (FUN, X0, ...) returns a structure
OUTPUT with the number of iterations taken in OUTPUT.iterations, the number
of function evaluations in OUTPUT. funcCount, the algorithm used in

OUTPUT.algorithm, the number of CG iterations (if used) in OUTPUT.cgiterations,
and the first-order optimality (if used) in OUTPUT.firstorderopt.

[X, FVAL, EXITFLAG, OUTPUT, LAMBDA]=FMINCON (FUN, X0, ...) returns the Lagrange
multipliers

at the solution X: LAMBDA.lower for LB, LAMBDA.upper for UB, LAMBDA.ineglin is
for the linear inequalities, LAMBDA.eglin is for the linear equalities,

LAMBDA.inegnonlin is for the nonlinear inequalities, and LAMBDA.egnonlin
is for the nonlinear equalities.

[X, FVAL, EXITFLAG, OUTPUT, LAMBDA, GRAD]=FMINCON (FUN, X0, ...) returns the value of
the gradient of FUN at the solution X.

[X, FVAL, EXITFLAG, OUTPUT, LAMBDA, GRAD, HESSIAN]=FMINCON (FUN, X0, ...) returns the
value of the HESSIAN of FUN at the solution X.

Examples
FUN can be specified using @:

X = fmincon (@humps, ...)
In this case, F = humps(X) returns the scalar function value F of the HUMPS

function
evaluated at X.

FUN can also be an inline object:
X = fmincon(inline('3*sin(x(1l))+exp(x(2))"'),(1;11,(01,[1,[1,(1,10 OI)

returns X = [0;0].

See also OPTIMSET, FMINUNC, FMINBND, FMINSEARCH, @, INLINE. top

http://kstio.com/nm/optimization/constrained.html#top

Unconstrained Optimization using Matlab's fminunc

A Basic Call

Example
B Call with gradient information supplied
Matlab's HEL.P DESCRIPTION

Matlab provides the function fminunc to solve unconstrained optimization problems.

A Basic call of fminunc top

Without any extra options the syntax is

[x,fval]=fminunc('objfun', x0)

where
obj fun: name of a function file in which the objective function is coded
%0 : (column) vector of starting values
X (1st output): optimal solution vector (column)

fval (2nd output): optimal function value

Notes:

1) Instead of objfun you can use any other name.

2) If you are not interested in fval, just type x=fminunc ('objfun', x0).

3) Various options can be adjusted, in particular the "gradient option" which utilizes information about the
gradient of the objective function; see B and Matlab's help description.

4) fminunc seeks a minimum (as does 1inprog). If a maximum is sought, code -f in the function file!!

Example: top
Minimize the objective function

f(x,y,z)=(x2+y2)2—x2—y+z2
(1) You first have to code the objective function. Open a new M-file in the editor and type in:
function f=objfun (x)

f=(x(1)"24x(2)"2)"2-x(1) "2-x(2)+x(3) *2;

Save the file under (any) name -- here we choose ob-fun.m. If the file is saved under this name then you
have access to it and can retrieve the value of the function for any input vector x. For example, if you
want to know the value at (1,1,1), type (command window or script file) objfun ([1;1;1]) and execute.
The answer in the command window is 3.

(2) Now we can apply fminunc with a properly chosen starting value to find a minimum. We choose x0=
[1;1;1] and execute the following commands in the command window:

>> x0=[1;1;11;[x,fval] = fminunc('objfun', x0)

Warning: Gradient must be provided for trust-region method;
using line-search method instead.

http://kstio.com/nm/optimization/unconstrained.html#A
http://kstio.com/nm/optimization/unconstrained.html#Example
http://kstio.com/nm/optimization/unconstrained.html#B
http://kstio.com/nm/optimization/unconstrained.html#Matlab%20help
http://kstio.com/nm/optimization/unconstrained.html#top
http://kstio.com/nm/optimization/unconstrained.html#B
http://kstio.com/nm/optimization/unconstrained.html#Matlab%20help
http://kstio.com/nm/optimization/unconstrained.html#top

> In C:\MATLABR12\toolbox\optim\fminunc.m at line 211

Optimization terminated successfully:

Current search direction is a descent direction, and magnitude of
directional derivative in search direction less than 2*options.TolFun

X:
0.49998491345499
0.50000453310525

-0.00000383408095

fval =
-0.49999999985338

The comment below the command line tells that no information about the gradient was provided which
may lead to non-optimal performance.

B Call of fminunc with gradient information supplied top

Optimization programs usually performs better if gradient information is exploited. This requires two
modifications:

(1) The objective file must be coded such that the gradient can be retireved as second output. For the
function above this requires the following extension of the function file:

function [f,gradf]=objfun (x)

f=(x(1)"24x(2)"2)"2-x(1) "2-x(2)+x(3) *2;
gradf=[4*x (1) *(x (1) "2+x(2) "2)-2*x (1) ;4*x(2) *(x(1) "2+x(2)"2)-1;2*x(3) 1;

The 2nd output argument, gradf, is the gradient vector of f written as column vector.

(2) The program has to be told' that it shall exploit gradient information. This is done by specifying one of
the optimization options, and the program has to be informed that it has to use this option. The general
syntax is

>> options=optimset ('GradObj', 'on');
>> [x,fval]l=fminunc ('ocbjfun',x0,options)

For the Example, now with gradient information supplied, we execute in the command window:

>> options=optimset ('GradObj', 'on');
>> x0=[1;1;1]; [x,fval]l]=fminunc('objfun',x0,options)

Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun

X:
0.50045437772043
0.49981153795642
0.00003452966310

fval =
-0.4999998924498¢6

As you can see, the values differ slightly from those obtained before, and are indeed more accurate.

Matlab's HELP DESCRIPTION top

http://kstio.com/nm/optimization/unconstrained.html#top
http://kstio.com/nm/optimization/unconstrained.html#top

FMINUNC Finds the minimum of a function of several variables.
X=FMINUNC (FUN, X0) starts at X0 and finds a minimum X of the function

FUN. FUN accepts input X and returns a scalar function value F evaluated
at X. X0 can be a scalar, vector or matrix.

X=FMINUNC (FUN, X0, OPTIONS) minimizes with the default optimization
parameters replaced by values in the structure OPTIONS, an argument
created with the OPTIMSET function. See OPTIMSET for details. Used
options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, GradObj,
HessPattern, LineSearchType, Hessian, HessMult, HessUpdate, MaxFunEvals,
MaxIter, DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter,
PrecondBandWidth, TolPCG, TypicalX. Use the GradObj option to specify that
FUN also returns a second output argument G that is the partial
derivatives of the function df/dX, at the point X. Use the Hessian option
to specify that FUN also returns a third output argument H that

is the 2nd partial derivatives of the function (the Hessian) at the

point X. The Hessian is only used by the large-scale method, not the
line-search method.

X=FMINUNC (FUN, X0, OPTIONS,P1,P2,...) passes the problem-dependent
parameters P1,P2,... directly to the function FUN, e.g. FUN would be

called using feval as in: feval (FUN,X,P1,P2,...).
Pass an empty matrix for OPTIONS to use the default values.

[X, FVAL]=FMINUNC (FUN, X0, ...) returns the value of the objective
function FUN at the solution X.

[X, FVAL, EXITFLAG]=FMINUNC (FUN, X0, ...) returns a string EXITFLAG that
describes the exit condition of FMINUNC.
If EXITFLAG is:

> 0 then FMINUNC converged to a solution X.

0 then the maximum number of function evaluations was reached.
< 0 then FMINUNC did not converge to a solution.

[X, FVAL, EXITFLAG, OUTPUT]=FMINUNC (FUN, X0, ...) returns a structure OUTPUT
with the number of iterations taken in OUTPUT.iterations, the number of
function evaluations in OUTPUT. funcCount, the algorithm used in OUTPUT.algorithm,

the number of CG iterations (if used) in OUTPUT.cgiterations, and the first-order
optimality (if used) in OUTPUT.firstorderopt.

[X, FVAL, EXITFLAG, OUTPUT, GRAD]=FMINUNC (FUN, X0, ...) returns the wvalue
of the gradient of FUN at the solution X.

[X, FVAL, EXITFLAG, OUTPUT, GRAD, HESSIAN]=FMINUNC (FUN, X0, ...) returns the
value of the Hessian of the objective function FUN at the solution X.

Examples

FUN can be specified using @:
X = fminunc (@myfun, 2)

where MYFUN is a MATLAB function such as:

function F myfun (x)
F = sin(x) + 3;

To minimize this function with the gradient provided, modify
the MYFUN so the gradient is the second output argument:

function [f,g]= myfun (x)
f = sin(x) + 3;
g = cos(x);
and indicate the gradient value is available by creating an options
structure with OPTIONS.GradObj set to 'on' (using OPTIMSET) :
options = optimset ('GradObj','on');
x = fminunc ('myfun', 2, options);

FUN can also be an inline object:
X = fminunc(inline('sin(x)+3"),2);

See also OPTIMSET, FMINSEARCH, FMINBND, FMINCON, @, INLINE. top

http://kstio.com/nm/optimization/unconstrained.html#top

Optimization problems.

Optimization :

@ Given function f: R" — R, and set S C R", find z* € S
such that f(xz*) < f(x) forall z € S

@ x* Is called minimizer or minimum of f

@ It suffices to consider only minimization, since maximum of
f is minimum of — f

@ Objective function f is usually differentiable, and may be
linear or nonlinear

@ Constraint set S is defined by system of equations and
Inequalities, which may be linear or nonlinear

@ Points & € S are called feasible points

@ If S =R", problem is unconstrained

Optimization problems

@ General continuous optimization problem:
min f(x) subjectto g(x)=0 and h(x) <0

where f:R" — R, g:R"—=R™, h:R"— RP
@ Linear programming: f, g, and h are all linear

@ Nonlinear programming: at least one of f, g, and h Is
nonlinear

Examples

@ Minimize weight of structure subject to constraint on its
strength, or maximize its strength subject to constraint on
its weight

@ Minimize cost of diet subject to nutritional constraints

@ Minimize surface area of cylinder subject to constraint on
its volume:

min f(x1.2r9) = 2ma1(xr1 + x2)
r,Tro

subjectto ¢g(xy.29) = F;I7%;IT2 -V =0

where 1 and x5 are radius and height of cylinder, and V' is
required volume

Global vs. local optimization :

@ x* € Sis global minimum if f(x*) < f(x) forallx € S

@ x* € Sis local minimum if f(x*) < f(a) for all feasible = in
some neighborhood of =*

I

local minimum

1

elobal minimum

Global Optimization

e In general, can’t guarantee that you've found
global (rather than local) minimum

e Some heuristics:

Multi-start: try local optimization from
several starting positions

Very slow simulated annealing

Use analytical methods (or graphing) to
determine behavior, guide methods to correct
neighborhoods

Global optimization

e Finding, or even verifying, global minimum is difficult, in
general

e Most optimization methods are designed to find local
minimum, which may or may not be global minimum

e If global minimum is desired, one can try several widely
separated starting points and see if all produce same
result

e For some problems, such as linear programming, global
optimization is more tractable

Existence of Minimum

@ If f is continuous on closed and bounded set S C R™, then
f has global minimum on S

@ If S is not closed or is unbounded, then f may have no
local or global minimum on S

@ Continuous function f on unbounded set S C R" is
coercive |f
lim f(x)=+4+oc

| — o0

l.e., f(x) must be large whenever ||z|| is large

@ If f is coercive on closed, unbounded set S C R", then f
has global minimum on S

Level sets

@ Level set for function f: S C R"™ — R Is set of all points In
S for which f has some given constant value

@ For given v € R, sublevel set Is
Ly={xeS: flx) <~}

@ If continuous function f on S C IR™ has nonempty sublevel
set that is closed and bounded, then f has global minimum

on S

@ If S'is unbounded, then f is coercive on S if, and only if, all
of its sublevel sets are bounded

Uniqueness of minimum

@ Set S C R" is convex if it contains line segment between
any two of its points

@ Function f: S C R"™ — IR is convex on convex set S if its
graph along any line segment in S lies on or below chord
connecting function values at endpoints of segment

@ Any local minimum of convex function f on convex set
S C R" is global minimum of f on S

@ Any local minimum of strictly convex function f on convex
set S C R" is unigue global minimum of f on S

First-order optimality condition

@ For function of one variable, one can find extremum by
differentiating function and setting derivative to zero

@ Generalization to function of n variables is to find critical
point, i.e., solution of nonlinear system

Vilx)=0

where V f(x) is gradient vector of f, whose ith component
IS df(x)/0x;
@ For continuously differentiable f: S C R™ — R, any interior

point * of S at which f has local minimum must be critical
point of f

@ But not all critical points are minima: they can also be
maxima or saddle points

Second-order optimality e
condition

@ For twice continuously differentiable f: S CR" — R, we
can distinguish among critical points by considering
Hessian matrix H ;(x) defined by

02 f [T)

H . 3 i1 — —
{ f{ E]} I EJ;I‘.g_U;Irj-

which is symmetric

@ At critical point z*, if Hy(x") Is
o positive definite, then x* is minimum of f
e negative definite, then x* is maximum of f
e indefinite, then x* is saddle point of f
e singular, then various pathological situations are possible

Constrained optimality

@ If problem is constrained, only feasible directions are
relevant

@ For equality-constrained problem
min f(x) subjectto g(x)=0

where f: R" — Rand g: R" — R™, with m < n, necessary
condition for feasible point =* to be solution is that negative
gradient of f lie in space spanned by constraint normals,

~Vf(x*) = JT(z*)A

where J, is Jacobian matrix of g, and A is vector of
Lagrange multipliers

@ This condition says we cannot reduce objective function
without violating constraints

Constrained optimality

@ Lagrangian function £: R"™™ — R, is defined by
Lz \) = f(x)+ A g(x)

@ Its gradient is given by

glx)
@ Its Hessian is given by
oy Bz T ()

where

Constrained optimality

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

Vi(x)+ I (x)X

g

VL(x,A) = ()

=0

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ Is saddle point rather than
minimum or maximum

@ Critical point (x*, A*) of £ is constrained minimum of f if
B(x*, *) Is positive definite on null space of .J,(x*)

@ If columns of Z form basis for null space, then test
projected Hessian Z1 B Z for positive definiteness

Constrained optimality

e If inequalities are present, then KKT optimality conditions
also require nonnegativity of Lagrange multipliers
corresponding to inequalities, and complementarity

condition

Sensitivity and conditioning

@ Function minimization and equation solving are closely
related problems, but their sensitivities differ

@ |In one dimension, absolute condition number of root 2* of
equation f(x) = 0is 1/|f'(x*)|, soif | f(2)] < ¢, then
| — 2*| may be as large as ¢/|f'(2*)|

@ For minimizing f, Taylor series expansion
flx) = f(‘r* + I)
= f(@*) + (@) + L f"(@")h? + O(h?)

shows that, since f/(2*) = 0, if |f(2) — f(2*)] < ¢, then
2 — 2*| may be as Iarge as /2¢/ |f”_)|

@ Thus, based on function values alone, minima can be
computed to only about half precision

Unimodality

@ For minimizing function of one variable, we need “bracket”
for solution analogous to sign change for nonlinear
equation

@ Real-valued function f is unimodal on interval |a, b] if there
IS unique =* € [a,b] such that f(x*) is minimum of f on
la, b], and f is strictly decreasing for = < z*, strictly
Increasing for o* < x

@ Unimodality enables discarding portions of interval based
on sample function values, analogous to interval bisection

Golden section search

@ Suppose f is unimodal on |[a. b], and let 2:; and x5 be two
points within [a, b], with 21 < a2

@ Evaluating and comparing f(xy) and f(ax5), we can discard
either (x5, 0] or [a, x1), with minimum known to lie in
remaining subinterval

@ To repeat process, we need compute only one new
function evaluation

@ To reduce length of interval by fixed fraction at each
iteration, each new pair of points must have same
relationship with respect to new interval that previous pair
had with respect to previous interval

-4
| | | | | | IER? f(X) :.
One-Dimensional Minimization
| f, 4 i
e Golden section "
search: successively P |
narrowing the fg
I f-'tb
brackets of upper and i
lower bounds X, X, X4 X;
. . ”] Start with x1,x2,x3 where 2 1s smaller
e Terminating condition: "~ . ' 2
|X3—X1 |<8 o lteration:
O Choose x4 somewhere in the larger

interval

Two cases for 14:
e f4a: [x1,x2,x4]
 f4b: [x2,x4,x3]

Initial
bracketing. ..

Golden section search

@ To accomplish this, we choose relative positions of two
pointsas rand 1 — 7, where 72 = 1 — 7, so
T=(vVb—-1)/2~0.618and 1 — 7 ~ 0.382

@ Whichever subinterval is retained, its length will be 7
relative to previous interval, and interior point retained will
be at position either 7 or 1 — 7 relative to new interval

@ To continue iteration, we need to compute only one new
function value, at complementary point

@ This choice of sample points is called golden section
search

@ Golden section search is safe but convergence rate is only
linear, with constant C' = 0.618

Golden section search :
T=(v5—-1)/2
r1=a+ (1 -7)(b—a); fi = f(z1)
ryg =a+ 7(b—a); fo = f(zs)
while ((b—a) > tol) do
if (f1 > f2) then

e

_—— — —= — -

a = I L |
T1 = o r
fi=fa
i) :ﬂ+T{b_ﬂ) | | T l
y sé”z:f (z2) a« oz w2 b
b= 29 T T
To = Iy | | | |
fg :fl il T aa b
ri=a+(1—71)(b—a) o |
fi = f(zy) T |
end S

end

Example

Use golden section search to minimize

f{‘T) =05—=x E}ip{—mg)

€I

Example (cont.)

J1

fo

0.764 0.074 1.236 0.232
0.472 0.122 0.764 0.074
0.764 0.074 0.944 0.113
0.652 0.074 0.764 0.074
0.584 0.085 0.652 0.074
0.652 0.074 0.695 0.071
0.695 0.071 0.721 0.071
0.679 0.072 0.695 0.071
0.695 0.071 0.705 0.071
0.705 0.071 0.711 0.071

Successive parabolic S
interpolation :

@ Fit quadratic polynomial to three function values

@ Take minimum of quadratic to be new approximation to
minimum of function

@ New point replaces oldest of three previous points and
process is repeated until convergence

@ Convergence rate of successive parabolic interpolation is
superlinear, with » ~ 1.324

Parabolic Interpolation (Brent)

_______ parabola through @ @ @

See00utbttons pafabOIR thfough @ @ @

Figure 10.2.1. Convergence to a minimum by inverse parabolic iterpolation. A parabola (dashed line) 1s
drawn through the three onginal points 1.2.3 on the given funcfion (solid line). The function 1s evaluated
at the parabola’s munimum 4. which replaces point 3. A new parabola (dotted line) 1s drawn through
pomnts 1.4.2. The munimum of this parabola 1s at 5. which 1s close to the munimum of the function.

Example :

Use successive parabolic interpolation to minimize

f(z) =0.5 — xexp(—z?)

v flag)
0.000 0.500
0.600 0.051
1.200 0.216
0.754 0.073
0.721 0.071
0.692 0.071
0.707 0.071

000
0000
o000
4
y
Newton’s method :
@ Another local quadratic approximation is truncated Taylor
series

fle4+h)=~ f(a)+ f'(2)h + f”;:) h?

@ By differentiation, minimum of this quadratic function of £ is
givenby h = —f'(x)/ f"(x)
@ Suggests iteration scheme
Trr1 = o — f'(2r) /[(24)
which is Newfon’s method for solving nonlinear equation

f'{x)=0

Newton’s method for finding minimum normally has quadratic
convergence rate, but must be started close enough to solution
to converge

Example
@ Use Newton’s method to minimize f(x) = 0.5 — xexp(—a?)
@ First and second derivatives of f are given by

f'(x) = (222 — 1) exp(—2?)
and
"(z) = 22(3 — 22%) exp(—22)
@ Newton iteration for zero of f’ is given by
‘I'k—l-l =TI — (2.“1?}"?: — 1:)/(2:1.';; (3 — 21%))
@ Using starting guess xy = 1, we obtain
v f(og)
1.000 0.132
0.500 0.111
0.700 0.071
0.707 0.071

Safeguarded methods

@ As with nonlinear equations in one dimension,
slow-but-sure and fast-but-risky optimization methods can
be combined to provide both safety and efficiency

@ Most library routines for one-dimensional optimization are
based on this hybrid approach

@ Popular combination is golden section search and
successive parabolic interpolation, for which no derivatives
are required

Multidimensional optimization. | s¢
Direct search methods

@ Direct search methods for multidimensional optimization
make no use of function values other than comparing them

@ For minimizing function f of n variables, Nelder-Mead
method begins with n + 1 starting points, forming simplex
in R"™

@ Then move to new point along straight line from current
point having highest function value through centroid of
other points

@ New point replaces worst point, and process is repeated

@ Direct search methods are useful for nonsmooth functions
or for small n, but expensive for larger n

Steepest descent method

@ Let f: R" — R be real-valued function of n real variables

@ At any point &z where gradient vector is nonzero, negative
gradient, —V f(a), points downhill toward lower values of f

@ Infact, —V f(x) is locally direction of steepest descent: f
decreases more rapidly along direction of negative
gradient than along any other

@ Steepest descent method: starting from initial guess x,
successive approximate solutions given by

Tip+1 = T — o,V f(xy)

where «ay, is line search parameter that determines how far
to go in given direction

Steepest descent method

@ Given descent direction, such as negative gradient,
determining appropriate value for a;, at each iteration is
one-dimensional minimization problem

min f(axp — apV f(xg))

ag
that can be solved by methods already discussed

@ Steepest descent method is very reliable: it can always
make progress provided gradient is nonzero

@ But method is myopic in its view of function’s behavior, and
resulting iterates can zigzag back and forth, making very
slow progress toward solution

@ In general, convergence rate of steepest descent is only
linear, with constant factor that can be arbitrarily close to 1

Example

@ Use steepest descent method to minimize

@ Gradientis given by V f(z) = [ml]

5:!.'2

-

|

[y

+] Taklng €Ty = [], we have \—f[d‘n] — [

|

@ Performing line search along negative gradient direction,

ey |

min f(xg — agV f(xo))

X[
exact minimum along line is given by ag = 1/3, so next
3.33;3]

approximation is @, = [—() 667

00
Example (cont.) o
/@
5 ‘/ ‘
T, flxg) Vf(xy)
5.000 1.000 | 15.000 | 5.000 5.000
3.333 —0.667 6.667 | 3.333 —3.333
2.222 0.444 2.963 | 2.222 2.222
L.48%1 —0.296 1.317 | 1.481 —1.481
0.988 0.198 0.585 | 0,988 (). 988
0.6568 —0.132 0.260 | 0.658 —0.658
).439 0.08% 0.116 | 0.439 ().439
0.293 —0.059 0.051 | 0.293 —0.293
().195 ().039 0.023 | 0.195 ().195
0.130 —0.026 0.010 | 0.130 —=0.130

Newton’s method

@ Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton’s method

@ In multidimensional optimization, we seek zero of gradient,
so Newton iteration has form

Ty1 = @k — Hp ' (x1)V f (k)

where H(x) is Hessian matrix of second partial
derivatives of f,
I f(x)

Helx)ly = ——
{ f(l')}d U.‘I‘.Z-U.‘Ifj

Newton’s method

@ Do not explicitly invert Hessian matrix, but instead solve
linear system

Hy(xy)sp = =V f(x)
for Newton step s;., then take as next iterate
Lyl = L) + S

@ Convergence rate of Newton's method for minimization is
normally quadratic

@ As usual, Newton’s method is unreliable unless started
close enough to solution to converge

Example

@ Use Newton’s method to minimize

f{i‘] = {},5.‘1‘2 + 2,5.‘1‘9
1 2

@ Gradient and Hessian are given by

‘F,f'(m:[;"li and Hf[far)zll ”]

:J.'I‘Q
1 50 = SO
0 5] —5|

5 —5 0 . .
O+ = g ., which is exact solution

for this problem, as expected for quadratic function

=

@ Taking xp = H , we have V f(xq) = [

[y |

1

~._.- [y |

I._,-_l'

@ Linear system for Newton step Is [

;Flzélfg—l—-ﬂ{j:[

Newton’s method

@ In principle, line search parameter is unnecessary with
Newton’s method, since quadratic model determines
length, as well as direction, of step to next approximate

solution

@ When started far from solution, however, it may still be
advisable to perform line search along direction of Newton
step s;. to make method more robust (damped Newton)

@ Once Iiterates are near solution, then o, = 1 should suffice
for subsequent iterations

Newton’s method

@ If objective function f has continuous second partial
derivatives, then Hessian matrix H; is symmetric, and
near minimum it is positive definite

@ Thus, linear system for step to next iterate can be solved in
only about half of work required for LU factorization

@ Far from minimum, H(x;) may not be positive definite, so
Newton step s;. may not be descent direction for function,
l.e., we may not have

Vf(xp) s, <0

@ In this case, alternative descent direction can be
computed, such as negative gradient or direction of
negative curvature, and then perform line search

Trust region methods

@ Alternative to line search is frust region method, in which
approximate solution is constrained to lie within region
where quadratic model is sufficiently accurate

@ If current trust radius is binding, minimizing quadratic
model function subject to this constraint may modify
direction as well as length of Newton step

@ Accuracy of quadratic model is assessed by comparing
actual decrease in objective function with that predicted by
quadratic model, and trust radius is increased or
decreased accordingly

Trust region methods :

trust radius

£Zj.

contours of
quadratic model

Quasi-Newton methods

@ Newton’s method costs O(n?) arithmetic and O(n?) scalar
function evaluations per iteration for dense problem

@ Many variants of Newton’s method improve reliability and
reduce overhead

@ (Quasi-Newiton methods have form
— 1
Tpy1 = xp — p BV f(xy)

where «y, is line search parameter and B;. is approximation
to Hessian matrix

@ Many quasi-Newton methods are more robust than
Newton's method, are superlinearly convergent, and have
lower overhead per iteration, which often more than offsets
their slower convergence rate

Secant updating methods

@ Could use Broyden’'s method to seek zero of gradient, but
this would not preserve symmetry of Hessian matrix

@ Several secant updating formulas have been developed for
minimization that not only preserve symmetry in
approximate Hessian matrix, but also preserve positive
definiteness

@ Symmetry reduces amount of work required by about half,
while positive definiteness guarantees that quasi-Newton
step will be descent direction

BFGS method

One of most effective secant updating methods for minimization
is BFGS

xo = Initial guess
B, = initial Hessian approximation
fork=0.1.2....
Solve By, s;. = —V f(xy,) for sy,
LTyl = Tk + Sk
Y = Vf(xp41) — Vf(xg)
Biy1 = B+ (yryl)/ (y} sk) — (Bpsys] By)/ (st Bisi)
end

BFGS method

@ |n practice, factorization of Bj, is updated rather than B;,
itself, so linear system for s;, can be solved at cost of O(n?)
rather than @ (n?) work

@ Unlike Newton’s method for minimization, no second
derivatives are required

@ Can start with By = I, so initial step is along negative
gradient, and then second derivative information is
gradually built up in approximate Hessian matrix over
successive iterations

@ BFGS normally has superlinear convergence rate, even
though approximate Hessian does not necessarily
converge to true Hessian

@ Line search can be used to enhance effectiveness

BFGS method

@ Use BFGS to minimize f(x) = 0.52% + 2.523

5:3.'2

@ Gradientis given by V f(x) = [ml]
@ Taking xp = |5 I]T and B, = I, initial step is negative

gradient, so

5 -5 0
] =&+ 8o =] + Y e

@ Updating approximate Hessian using BFGS formula, we
obtain

B, — [{],om [].ddd]

(.333 0.667

@ Then new step is computed and process is repeated

Example
Ty fla) V[{xg)
5.000 1.000 | 15.000 5.000 5.000
0.000 —4.000 | 40.000 0.000 —20.000
—2.222 0.444 | 2.963 | —2.222 2.222
0.816 0.082 (.350 0.816 0.408
—0.009 —=0.015 0.001 | —0.009 —=0.077
—0.001 0.001 0.000 | —0.001 0.005

@ Increase in function value can be avoided by using line

search, which generally enhances convergence

For quadratic objective function, BFGS with exact line search finds

exact solution in at most n iterations, where n is dimension of problem

Conjugate gradient method

@ Another method that does not require explicit second
derivatives, and does not even store approximation to
Hessian matrix, is conjugate gradient (CG) method

@ CG generates sequence of conjugate search directions,
implicitly accumulating information about Hessian matrix

@ For quadratic objective function, CG is theoretically exact
after at most n iterations, where n is dimension of problem

@ CG is effective for general unconstrained minimization as
well

CG method

xo = Initial guess

go =V flxo)
S0 = —go
fork=0.1.2....

Choose ay, to minimize f(x; + a.8;,)
Lpy] = L) + LSk
gk+1 =V [(Try1)
Oky1 = (Qﬂlgﬁaﬂ}f(gfg;;]
Sk4+1 = —Ghkt1 + Dry15k
end

@ Alternative formula for 3, Is

Brr1 = ((Grg1 — nggﬁfﬂ)f(Qf gr.)

CG method example

@ Use CG method to minimize f(x) = 0.52% + 2.523

e Gradientis given by Vf(z) = [;l]
e b 2
e Taking =0 = [5 1], initial search direction is negative
gradient,
So = —go = —V [flxg) = [_j]

—

@ Exact minimum along line is given by ay = 1/3, so next
approximation is x; = [3.333 —U,UUT]T, and we compute
new gradient,

. 3.333
g =Vflr) = []

—3.333

Example (cont.)

@ So far there is no difference from steepest descent method

@ At this point, however, rather than search along new
negative gradient, we compute instead

By = (g7 g1)/ (gl go) = 0.444

which gives as next search direction

[N |

—3.333 — —5.556

81 = — 3180 = 44 —

51 = "91+ P10 [3,;5;5;5] 04 [—5] [1.111]

@ Minimum along this direction is given by a; = 0.6, which

gives exact solution at origin, as expected for quadratic
function

Truncated Newton methods

e Another way to reduce work in Newton-like methods is to
solve linear system for Newton step by iterative method

e Small number of iterations may suffice to produce step
as useful as true Newton step, especially far from overall
solution, where true Newton step may be unreliable
anyway

e Good choice for linear iterative solver is CG method,
which gives step intermediate between steepest descent
and Newton-like step

e Since only matrix-vector products are required, explicit
formation of Hessian matrix can be avoided by using
finite difference of gradient along given vector

Nonlinear Least squares

@ Given data (¢;,y;), find vector x of parameters that gives
“best fit” in least squares sense to model function f(t,x),
where f is nonlinear function of a

@ Define components of residual function

so we want to minimize ¢(x) = r

@ Gradient vector is Vo (x) = J' (x)r(x) and Hessian matrix
IS

Hy(z) =J" (x)J(x) + > ri(x)Hi(x)
1=1

where J(x) is Jacobian of »(x), and H;(x) is Hessian of
i)

Nonlinear least squares

@ Linear system for Newton step is

(JT xp)J(x) —I—Z) 8. = —JT[IL]I[IL]

@ m Hessian matrices H; are usually inconvenient and
expensive to compute

@ Moreover, in H; each H; is multiplied by residual
component r;, which is small at solution if fit of model
function to data is good

Gauss-Newton method

@ This motivates Gauss-Newton method for nonlinear least
squares, in which second-order term is dropped and linear
system

J(xp) T (1) s = =TT ()7 (xp)
Is solved for approximate Newton step s; at each iteration

@ This is system of normal equations for linear least squares
problem
J(xp)sp = —r(xy)

which can be solved better by QR factorization
@ Next approximate solution is then given by
LTpt+1 = Lk + Sk

and process is repeated until convergence

Example :

@ Use Gauss-Newton method to fit nonlinear model function

f(t,x) = a1 exp(xat)

to data
t 100 1.0 20 3.0
y |20 07 03 0.1

@ For this model function, entries of Jacobian matrix of
residual function r are given by
U'I‘.Z' (1) A

{J(;lj:)}i,l — ('_-);1.71 = —(‘,XI)(;I‘Qt.Z‘_)

{J(x)}io = ———— = —a1t;exp(wat;)

Example (cont.)

o If we take o = [1 0], then Gauss-Newton step s is

given by linear least squares problem

—1 0 —1

-1 -1 |03

—1 =277 Jo7

-1 -3 0.9
whose solution is sp = [ﬂ'w]
—0.61

000

| X J

[

T |7 (x0)]13

1.000 0.000 2.390
1.690 —0.610 0.212
1.975 —0.930 0.007
1.994 —1.004 0.002
1.995 —1.009 0.002
1.995 —1.010 0.002

@ Then next approximate solution is given by =y = xg + s,

and process is repeated until convergence

Gauss-Newton method

@ Gauss-Newton method replaces nonlinear least squares
problem by sequence of linear least squares problems
whose solutions converge to solution of original nonlinear
problem

@ If residual at solution is large, then second-order term
omitted from Hessian is not negligible, and Gauss-Newton
method may converge slowly or fail to converge

@ In such “large-residual” cases, it may be best to use
general nonlinear minimization method that takes into
account true full Hessian matrix

Levenberg-Marquardt method |:

@ Levenberg-Marquardt method is another useful alternative
when Gauss-Newton approximation is inadequate or yields
rank deficient linear least squares subproblem

@ In this method, linear system at each iteration is of form
(JT(:B]C:)J(;I?]\-) + ppd) s = —JT(LZTA-)'I’(ilTL-)
where i, is scalar parameter chosen by some strategy

@ Corresponding linear least squares problem is

J(xp) o, o —r(xy)
/7o o R

With suitable strategy for choosing pk, this method can be very robust
in practice, and it forms basis for several effective software packages

Equality-constrained t
optimization

@ For equality-constrained minimization problem
min f(x) subjectto g(x)=0

where f: R" — R and g: R" — R™, with m < n, we seek
critical point of Lagrangian £(x, \) = f(x) + AT g(x)

@ Applying Newton’s method to nonlinear system
VL(x,) = [vf("l') +J (‘J'))\] =0
glx)
we obtain linear system

[.)] [] [1)+Jg(;1:)>\]
Jg(x) g(x)

for Newton step (s. (x.) at each iteration

Sequential quadratic T
programming

@ Foregoing block 2 x 2 linear system is equivalent to
quadratic programming problem, so this approach is
known as sequential quadratic programming

@ Types of solution methods include

e Direct solution methods, in which entire block 2 x 2 system
Is solved directly

e Range space methods, based on block elimination in block
2 x 2 linear system

e Null space methods, based on orthogonal factorization of
matrix of constraint normals, JE(I)

Merit function :

@ Once Newton step (s, d) determined, we need merit
function to measure progress toward overall solution for
use in line search or trust region

@ Popular choices include penalty function

Op(w) = f(x) + 5 pg(x) g(x)
and augmented Lagrangian function
Lo,) = flz)+)\Tg(;lt) + %/)g(;l?)Tg(;l?)

where parameter p > () determines relative weighting of
optimality vs feasibility

@ Given starting guess xq, good starting guess for Ag can be
obtained from least squares problem

J, (o) Ao 2= =V f (o)

Inequality-constrained
optimization

@ Methods just outlined for equality constraints can be

extended to handle inequality constraints by using active
set strategy

@ Inequality constraints are provisionally divided into those
that are satisfied already (and can therefore be temporarily
disregarded) and those that are violated (and are therefore
temporarily treated as equality constraints)

@ This division of constraints is revised as iterations proceed
until eventually correct constraints are identified that are
binding at solution

Penalty methods :

@ Merit function can also be used to convert
equality-constrained problem into sequence of
unconstrained problems

) If;r IS solution to

min ¢p(x) = f(x) + 1 pg(x)Tg(x)

o

then under appropriate conditions

*

lim &% =@
p—00 P
This enables use of unconstrained optimization methods, but problem
becomes ill-conditioned for large p, so we solve sequence of problems with

gradually increasing values of , with minimum for each problem used as
starting point for next problem

Barrier methods e

@ For inequality-constrained problems, another alternative is
barrier function, such as

P
o Z 1
(;"r)H (_;B) — f(;l:) — H —]12“(117:)

or »
Ou(x) = flx) — 1 Z log(—hi(x))
1=1

which increasingly penalize feasible points as they
approach boundary of feasible region

@ Again, solutions of unconstrained problem approach x* as
11 — 0, but problems are increasingly ill-conditioned, so
solve sequence of problems with decreasing values of

@ Barrier functions are basis for interior point methods for
linear programming

n - (X X
Example: constrained T
optimization

@ Consider quadratic programming problem
min f(x) = {],5;1% + 2.5;1*%
subject to
glx)=r1 —a19—1=10
Q Lagrangian function is given by
= f(x) +Ag(x) = U,E-:r% + E,E:Ir% + Aoy —a9—1)
@ Since
. £ :
i?fan)::lﬁjé] and J,(x)=1[1 —1]
we have

V,L(x\) = Vf(x +Jﬂ]ﬁ—b}]+h[1
SN —1

Example (cont.)

@ So system to be solved for critical point of Lagrangian is

r1+A = 0
bra — A = 0
ri—mr9 = 1

which in this case is linear system

10 17 [y 0
0 5 —1| |za| =0
1 -1 o] [A] |1

@ Solving this system, we obtain solution

r1 = 0.833, @2 =—-0.167, A= —0.833

Example (cont.)

1.0~

contours of 0.5;17",3 + ‘2.5;['5

=

1
—1.5

—1.0%

Linear progamming
@ One of most important and common constrained

optimization problems is linear programming

@ One standard form for such problems is

min f(z) = ¢’ subjectto Az =b and x>0

where m <n, A e R™" be R and c.xc € R"

@ Feasible region is convex polyhedron in R"™, and minimum
must occur at one of its vertices

@ Simplex method moves systematically from vertex to
vertex until minimum point is found

Linear programming

@ Simplex method is reliable and normally efficient, able to
solve problems with thousands of variables, but can
require time exponential in size of problem in worst case

@ /nterior point methods for linear programming developed in
recent years have polynomial worst case solution time

@ These methods move through interior of feasible region,
not restricting themselves to investigating only its vertices

@ Although interior point methods have significant practical
Impact, simplex method is still predominant method in
standard packages for linear programming, and its
effectiveness in practice is excellent

Example: >
linear programming h

Dy 4 4 = 40

r | 3.?‘-_) =12

N N0 ™ !

0 —27 —46 —66 —88.2

@ To illustrate linear programming, consider

min = CT

€

r—=—8r; — 1lrs
subject to linear inequality constraints

Sy +4dao <40, —x14+ 3090 <12, 11 20, 290 =0
@ Minimum value must occur at vertex of feasible region, in
this case at =y = 3.79, x5 = 5.26, where objective function
has value —88.2

	Numerical Method
	all-opt
	optimization-intro
	optimization
	chap6.1
	chap6.2
	chap6.3
	chap6.4
	chap6.5

	constrained
	unconstrained
	optimization-talk- final

